Understanding the vitamin supply chain and relative risk of transmission of foreign animal diseases

Dr. Jerry Shurson and Dr. Pedro Urriola

Department of Animal Science University of Minnesota

Executive summary

- Vitamins are essential nutrients required by swine to optimize health, productivity and well-being
- The U.S. pork industry is dependent on vitamins manufactured in China because there are limited, and in some cases, there are no other country of origin options to meet industry volume demands.
- Initial studies have provided emerging evidence that the African Swine Fever virus (ASFv) can survive in choline chloride, but not vitamin D₃. However, it is unknown if this virus can survive in other vitamins.
- The risk of ASFv or other Foreign Animal Diseases (FAD) being introduced from China into the U.S. through vitamin imports appears to be low, but the impact of introduction is high.
 - Vitamin manufacturing involves many highly technical chemical or fermentation processes that utilize commonly accepted quality control certification schemes and sanitary processes to meet human food grade, and often pharmaceutical standards in the U.S. and E.U. Vitamins imported for use in animal feeds in the U.S. are manufactured in the same facilities and under the same conditions.
 - There is no distinction between human (pharmaceutical) grade vitamin production versus animal feed grade production, unlike some other feed additives and by-products used in the feed industry
 - Although gelatin used in manufacturing vitamin A and D₃ originates from pigskin, there appears to be sufficient thermal treatments used in extracting, concentrating, and sterilizing gelatin to inactivate pathogens.
 - Some vitamin suppliers visit and audit corn cob suppliers for choline chloride production to verify that there is a killing step in corn cob carrier production.
 - Only clean, unused, sealed containers and materials (e.g. pallets) are used for packaging and transporting vitamins to the U.S., usually under hazardous materials shipping standards due to high purity All damaged containers and packages containing vitamins during transport are destroyed and not used in manufacturing swine feeds.
 - Once purified vitamins arrive in the U.S., they are distributed to U.S. vitamin premix manufacturers for blending with carriers. Only carriers produced in North America are used by the U.S. vitamin premix manufacturers to minimize the risk of cross-contamination.
 - Vitamins are produced and transported to the U.S. at the highest purity possible for economic reasons. They are not blended with carriers at the locations of production except for choline chloride. Finely ground corn cobs (60%) are added to some choline chloride products after manufacturing and before transport, and your supplier should give you information about the procurement and processing of this material to assess the impact on disease transmission.
 - The chain of custody from manufacturing to delivery to premix manufacturers is up to 120 days, with an additional up to 90 days holding time until premixes are manufactured, and up to an additional 180 days until vitamin premixes are added to complete swine feeds and delivered to commercial farms. This extremely long holding period from the time vitamins are manufactured in China until they are

consumed by pigs greatly exceeds the required holding time for vitamins of up to 39 days for 99.99% ASFv degradation inactivation that has been suggested based on research to determine half-life of ASFv.

- The majority of U.S. vitamin importers and premix manufacturers have processes and quality assurance programs in place to prevent the introduction of ASFv into U.S. swine herds.
- However, there are a few unconventional brokers and traders that may import vitamins from China and market them using limited if any biosecurity and quality assurance control procedures. Obtaining vitamins and premixes from these entities increases the risk of ASFv introduction.
- Pork producers are responsible for selecting reputable suppliers of all feed ingredients by asking appropriate questions to avoid potential suppliers that do not follow standards of feed safety.
- Cross-contamination of vitamin premixes from imported feed ingredients (especially porcine derived) and pet foods could occur in multi-species commercial feed mills if prerequisite or food safety plans are not designed to prevent cross-contamination.
- The evaluation of the effectiveness of using various mitigation procedures such as thermal treatment, irradiation, pH adjustments, and feed additives for feed and feed ingredients contaminated with ASFv is not complete. Most research has focused on the effectiveness of additives added during complete feed processing with other types of viruses which have very different characteristics compared with ASFv. However, vitamins are unique compared to other feed ingredients because they are sensitive to high heat treatment and pH, which can substantially reduce their nutritional value. Therefore, options for treating vitamins and vitamin premixes with these methods is likely not a viable option, and if used, vitamin stability evaluations should be conducted to confirm adequate stability or adjust dietary vitamin concentrations to compensate for potential losses.

Summary of potential risk factors for ASF virus contamination/transmission in the vitamin supply chain

- Purchasing vitamin products from unconventional brokers and traders that do not provide necessary documentation of country of origin, quality assurance, and sanitary transport procedures.
- Cross-contamination of vitamin premixes from imported feed ingredients (especially porcine derived) and pet foods in multi-species commercial feed mills.
- Use of gelatin derived from pigskin when manufacturing vitamin A and D₃.
- Use of ground corn cobs as a carrier during the choline chloride manufacturing process.

Current situation

Extensive interconnectedness of global trade and human mobility has dramatically increased the risk of transmitting foreign animal diseases (FAD) from endemic countries compared with those that do not have these diseases. Several FAD have been identified as potential threats to the U.S. pork industry, especially African Swine Fever (ASFv; Dee et al., 2018).

Feed ingredients contaminated with viruses, which includes some vitamins, have been shown to maintain active virus that could potentially serve as a means of transmission to pigs. Studies have evaluated the survival of Porcine Epidemic Diarrhea Virus (PEDV), Porcine Delta Corona Virus (PDCoV), and Transmissible Gastroenteritis Virus (TGEV) in feed ingredients and showed no differences in survival of PEDV among complete feed, vitamin-trace mineral premix, and other feed ingredients tested (Trudeau et al., 2017). However, PDCoV and TGEV survived longer in soybean meal and corn compared to all other feed ingredients and (Trudeau et al., 2017). In a recent study by Dee et al. (2018), surrogate viruses for Foot and Mouth Disease virus (Seneca Virus A), Swine Vesicular Disease virus (Porcine Sapelovirus), PEDV, and Porcine Circovirus Type 2 virus survived in vitamin D using the length of time in trans-Pacific and trans-Atlantic transport models. Although ASFv did not survive in vitamin D, it did survive in choline chloride along with Seneca Virus A, PEDV, and Porcine Circovirus Type 2. These results have raised questions about the risk of ASF virus survival in other types of imported vitamins. However, it is important to acknowledge that many feed ingredients and pet food products are imported into the U.S. annually. The risk assessment of transmission of ASFv in these feed ingredients and pet food from China has not been determined, but they may pose a greater risk of ASFv and FAD virus transmission than imported vitamins due to less control of cross-contamination from procurement or manufacturing and transit to U.S. destinations (Table1).

International Trade Commission; https://dataweb.usitc.gov/)				
Ingredient	kg			
Corn grain	794,874,396			
Pork and pork derived products	512,302,065			
Soybeans	507,524,609			
Animal feeds excluding pet food	395,205,327			
Dog and cat food	254,881,394			

128,453,000

Table 1. Feed ingredients imported into the United States in 2018 (Source: United States International Trade Commission; https://dataweb.usitc.gov/)

Vitamins represent a significant proportion of total feed ingredient imports (**Table 1**), and some vitamins (biotin, folic acid, pyridoxine, thiamin, and B_{12}) are almost exclusively, or only manufactured in China (**Table 2**), which is endemic with ASFv. Therefore, U.S. pork producers and their feed suppliers have questioned the relative risk of importing vitamins from China for introducing ASFv into North America.

Total vitamin imports for human and animal use

Table 2. Estimates of the quantity and percentage of total vitamins imported into the United States from China in 2018 (Source: United States International Trade Commission; https://dataweb.usitc.gov/)

Vitamin imports (human and animal use)	kg	Estimated % of total vitamin imports
Total	91,534,032	-
Vitamin C	36,435,935	80
Vitamin E and related	27,689,710	55
Niacin (B ₃)	9,891,192	50
Pantothenic acid (B ₅)	4,781,253	70
Vitamin A	2,257,388	35
Thiamin (B ₁)	2,137,934	90
Riboflavin (B ₂)	1,507,016	50
Pyridoxine (B ₆)	1,367,483	90
Vitamin B ₁₂	661,107	90
Folic acid	337,106	40
Other unmixed vitamins and derivatives	4,467,908	70

However, it is important to recognize that 5.1% of imported soybean meal, 11.7% of imported soybeans, and 4.5% of brewery/distillery by-products are imported from ASFv-affected countries (USDA, 2019). These feed ingredients may be a risk factor for the transmission of ASFv and other foreign animal viruses, but there are no published data documenting the presence or prevalence of viruses in imported feed ingredients.

Most vitamin manufacturers produce human and animal grade vitamins using the same quality assurance and controls that meet human grade standards. Third party certification programs (e.g. GMA – Grocery Manufacturers Association; GMP+ - Good Manufacturing Practices; FAMI-QS – Feed Additive and preMixture System) are used in vitamin manufacturing facilities, which likely minimizes the risk of contamination of vitamin products with ASFv or other viruses (Figure 1). Therefore, the risk of ASFv introduction from vitamins is considered to be low, but if contaminated, vitamins can be a vehicle for virus introduction in the U.S.

Figure 1. General description of the vitamin supply chain

This means that sanitation practices must be in place after manufacturing and during transport to further minimize the risk of virus contamination. Once these highly concentrated, purified chemical forms of vitamins arrive in the U.S., they are blended with carriers (e.g. rice hulls, corn cobs) to manufacture vitamin or vitamin-trace mineral premixes, which are added at low inclusion rates (1 to 10 lbs/ton) to complete swine feeds. The countries of origin of these carriers are almost exclusively in North America, which pose minimal risk of ASFv contamination because this virus is not present in North America.

It is important to recognize that not all vitamin suppliers follow strict quality assurance and sanitary transport procedures. Unconventional, non-certified, or uninspected vitamin brokers and traders exist in the vitamin supply chain, which may pose a greater risk of ASFv introduction. Therefore, pork producers should be diligent when selecting only vitamin suppliers and choose those that adhere to the highest quality assurance and sanitary transport procedures. In addition, there is potential risk of cross-contamination in multi-species feed mills if other imported feed ingredients from ASFv endemic countries are used in manufacturing complete feeds.

Vitamins are essential nutrients in swine diets

It is well established that vitamins are required nutrients in swine diets to avoid deficiencies and optimize growth, reproduction, health and well-being of pigs (NRC, 2012; Barroeta et al., 2011). Although many commonly used feed ingredients, such as corn, soybean meal, dried distillers grains with solubles, and wheat middlings contain vitamins, the concentrations, potency, and bioavailability are considered inadequate to meet the pig's requirements. Therefore, vitamin requirements are met in commercial swine diets by properly formulating vitamin and vitamin-trace mineral premixes used as supplements in complete feeds. A list of required vitamins supplemented in swine diets is shown in **Table 3**.

Because vitamin supplementation is essential in swine diets, volumes of vitamins imported must match industry needs, and the majority of vitamins used in swine premixes in the U.S. are imported from China, several questions about the potential risk of ASFv transmission at various stages of the vitamin supply chain need to be answered:

- 1. Where are vitamins manufactured?
- 2. What are the processes used to manufacture vitamins?
- 3. What are the quality control and biosecurity procedures used to manufacture vitamins?
- 4. Are the processes and ingredients used to manufacture vitamins safe?
- 5. Are the packaging materials safe?
- 6. What is the typical length of time from vitamin manufacturing in China until vitamins are consumed by pigs on commercial farms in the U.S.?
- 7. What is the risk of cross-contamination of shipments of purified vitamins in the supply chain?
- 8. How are vitamin premixes made?
- 9. Are all vitamin product providers reputable?
- 10. What is the additional risk of ASFv transmission in multi-species feed mills compared with single species feed mills?

- 11. Can additional biosecurity and sanitary practices and traceability be implemented in the vitamin supply chain to minimize risk of virus transmission?
- 12. Are there effective mitigation treatment strategies that can be used to inactivate ASF if it is present?

Vitamin ¹	Chemical forms ¹	Commercial forms of straights ²
А	Retinol	Vitamin A beadlet – Cross-linked
	Retinal	Vitamin A beadlet – Non S. Cong. non-
	Retinoic acid	cross-linked
D_3	Cholecalciferol	Vitamin D ₃ beadlet (A/D ₃) Cross-linked
		Vitamin D_3 S. Cong.
		Vitamin D ₃ SD
		Vitamin D ₃ drum dried
E	DL-α-tocopheryl acetate	Vitamin E acetate (50%)
	D-α-tocopheryl acetate	Vitamin E alcohol, natural
	D-a-tocopherol	
K (menadione)	2-methyl-1,4-naphthoquinone	Menadione sodium bisulfate (MSB)
		MSB coated
		Menadione dimethylpyriminol bisulfite
		(MPB)
		Menadione sodium bisulfate complex
		(MSBC)
		Menadione nicotinamide bisulfite MNB
Biotin (B ₇)	Biotin	Biotin
Choline	Choline chloride	Choline chloride
Folacin (B ₉)	Folate	Folic acid
	Folic acid	
	Pteroylglutaminc acid	
Niacin (B ₃)	Nicotinic acid	Niacin
	Nicotinamide	Niacinamide
Pantothenic acid (B ₅)	Nicotinamide D-calcium pantothenate	
	Nicotinamide D-calcium pantothenate DL-calcium pantothenate-	Niacinamide
Pantothenic acid (B ₅)	Nicotinamide D-calcium pantothenate DL-calcium pantothenate- calcium chloride complex	Niacinamide Calcium pantothenate
Pantothenic acid (B ₅) Riboflavin (B ₂)	Nicotinamide D-calcium pantothenate DL-calcium pantothenate- calcium chloride complex Riboflavin	Niacinamide Calcium pantothenate Riboflavin
Pantothenic acid (B ₅)	Nicotinamide D-calcium pantothenate DL-calcium pantothenate- calcium chloride complex	Niacinamide Calcium pantothenate Riboflavin Thiamine HCl
Pantothenic acid (B ₅) Riboflavin (B ₂) Thiamin (B ₁)	Nicotinamide D-calcium pantothenate DL-calcium pantothenate- calcium chloride complex Riboflavin Thiamine	Niacinamide Calcium pantothenate Riboflavin Thiamine HCl Thiamine Mono
Pantothenic acid (B ₅) Riboflavin (B ₂)	NicotinamideD-calcium pantothenateDL-calcium pantothenate-calcium chloride complexRiboflavinThiaminePyridoxine	Niacinamide Calcium pantothenate Riboflavin Thiamine HCl
Pantothenic acid (B ₅) Riboflavin (B ₂) Thiamin (B ₁)	NicotinamideD-calcium pantothenateDL-calcium pantothenate-calcium chloride complexRiboflavinThiaminePyridoxinePyridoxal	Niacinamide Calcium pantothenate Riboflavin Thiamine HCl Thiamine Mono
Pantothenic acid (B ₅) Riboflavin (B ₂) Thiamin (B ₁)	NicotinamideD-calcium pantothenateDL-calcium pantothenate-calcium chloride complexRiboflavinThiaminePyridoxine	Niacinamide Calcium pantothenate Riboflavin Thiamine HCl Thiamine Mono

 Table 3. Chemical and commercial synthetic forms of vitamins required by pigs

¹Information from NRC (2012)

²Information adapted from BASF, Animal Nutrition, 6th edition (2000) and DSM, Optimum Vitamin Nutrition for Pigs, 12th edition (2016)

Where are vitamins manufactured?

The majority of global vitamin production at needed volumes occurs in China. Given the magnitude of the ASFv epidemic in China, feed ingredients produced in China, including

vitamins, have become a target for questioning their contribution to the potential risk of transmission of FADs including ASFv. **Table 4** provides estimates of the total production of various vitamins produced in China. Note that with the exception of vitamin A, E, and niacin, 80 to 100% of all other vitamins must be imported from China. For biotin, folic acid and vitamin B₁₂, there are no other sources beyond China to acquire these vitamins. Therefore, there are limited options for sourcing most vitamins from countries or regions outside of China in the market today. In fact, compared with a previous survey of vitamin manufacturing companies and locations in China (Enting et al., 2010), it appears that the contributions of Chinese manufacturers to total global vitamin production has increased during the last 9 years. See **Appendix 1** for a listing of the major vitamin manufacturers, vitamin products, and manufacturing location.

Vitamin	China,	European Union,	India,	Korea,	Uruguay,
	%	%	%	%	%
А	35	65	-	-	-
D_3	80	10	10	-	-
Е	58	42	-	-	-
K (MNB)	78	10	-	-	12
Thiamine (B ₁)	90	10	-	-	-
Riboflavin (B ₂)	50	25	-	25	-
Niacin (B ₃)	37	43	20	-	-
Calcium pantothenate (B ₅)	80	20	-	-	-
Pyridoxine (B ₆)	90	10	-	-	-
Biotin (B ₇)	100	-	-	-	-
Folic acid (B ₉)	100	-	-	_	-
B ₁₂	100	-	-	_	-
Vitamin C	85		-	_	-

 Table 4. Current estimates of the percentage of global vitamin production from China

 compared with other countries and regions (data obtained from vitamin industry sources).

What are the processes used to manufacture vitamins?

Vitamins are manufactured using proprietary chemical or fermentation processes that involve time, temperature, and pH conditions that are likely to inactivate viruses if they are present. Vitamin manufacturing is a highly technical, hygienic process suitable for achieving pharmaceutical grade products meeting current human health and safety standards (see **Appendix 2** for photos of vitamin production facilities in China). In fact, there is no distinction between human (pharmaceutical) grade vitamin production versus animal feed grade production, unlike some other feed additives and by-products used in the feed industry. Purified forms of vitamins are called "straights", which is the form imported into the U.S. without blending with premix carriers, except for choline chloride that is imported blended with corn cobs or other carriers.

For fat-soluble vitamins (A, D₃, and E), examples of manufacturing processes are shown in **Figures A3.1, A3.2, A3.3, and A3.4 in Appendix 3**. Examples of raw materials used in

manufacturing these vitamins and the origin is shown in **Table 5**, and the temperature and duration of heating processes for vitamins A, D₃, and E are shown in **Appendix 4**. The manufacturing process for these vitamins generally involves adding ingredients at various stages, dissolution and emulsification, spray granulation, drying, heating, drying, mixing, and sieving. Therefore, there is some thermal exposure during the production process that may be adequate to inactivate any virus if it is present. However, the necessary time and temperature of exposure to inactivate ASFv in vitamins has not yet been determined.

The water-soluble vitamins (B vitamins) are produced using various proprietary fermentation and chemical processes. Examples of processes used to produce riboflavin, calcium pantothenic acid, and choline chloride are shown in **Figures A3.5**, **A3.6**, **and A3.7**, **respectively in Appendix 3**. Additional descriptions of main ingredients and general production processes for various forms of vitamin K and other B vitamins are shown in **Table A3.1 of Appendix 3**. The temperature and duration of heating processes for biotin is shown in **Appendix 4**.

Vitamin product	Composition	Manufacturing location
Vitamin A 650, feed grade	Vitamin A acetate	Shaoxing, Zhejiang Province
	Gelatin	Wenzhou, Zhejiang Province Xiangyin, Hunan Province
	Corn starch	Haiyan, Jiaxing Province
	Glucose Hohhot, Inner Mongolia	
	Ethoxyquin/BHT	Yixing, Jiangshu Province Nanjing, Jiangshu Province
	Silicon dioxide	Taiwan
Vitamin A 1000, feed grade	Vitamin A acetate	Shaoxing, Zhejiang Province
	Gelatin	Wenzhou, Zhejiang Province Xiangyin, Hunan Province
	Corn starch	Haiyan, Jiaxing Province
	Glucose	Hohhot, Inner Mongolia
	Ethoxyquin/BHT	Yixing, Jiangshu Province
		Nanjing, Jiangshu Province
	Silicon dioxide	Taiwan
Vitamin D ₃ 500, feed grade	Vitamin D ₃ oil (Cholecalciferol)	Shaoxing, Zhejiang Province
	Gelatin	Wenzhou, Zhejiang Province Xiangyin, Hunan Province
	Corn starch	Haiyan, Jiaxing Province
	Sugar	Liuzhou, Guangxi Province
	BHT	Yixing, Jiangshu Province
		Nanjing, Jiangshu Province
	Silicon dioxide	Taiwan
Vitamin E – all-rac-alpha-tocopheryl acetate	Vitamin E acetate	Shaoxing, Zhejiang Province
50% feed grade	Silicon dioxide	Wuxi, Jiangshu Province Qihe, Shangdong Province

Table 5. Examples of composition and origin of raw materials used to manufacture selected vitamin products produced by Zhejiang Medicine Co., Ltd. in China

Although vitamin manufacturing facilities are located in Chinese provinces that are endemic with ASFv, they are gated with strict security and biosecurity procedures in place to prevent unwanted visitors, pests, rodents, and animals from entering the premises (see Appendix 2 for photos of

actual facilities). However, specific details of biosecurity practices and third-party audits are unclear at this time.

What are the quality control and biosecurity procedures used to manufacture vitamins?

Many Chinese vitamin manufacturers indicate using various Quality Assurance certification schemes such as ISO, HACCP, GMP+, FAMI-QS, Kosher, HALAL, and others (Enting et al., 2010). Most feed safety and quality certifications were developed to ensure practices that prevent contamination and minimize risks. However, specific considerations for ASFv and other FADs have not been a primary focus when considering virus contamination as a potential hazard. Therefore, the existing feed safety and biosecurity protocols may need to be improved in the future, with greater consideration for implementing practices that further minimize the risks of contamination with important viruses.

With the exception of GMP+ and HACCP, implementation and compliance with these certification programs is voluntary in most countries. In other words, most certification programs are implemented based on requirements of customers and are not official regulations. Therefore, the types and use of quality assurance programs vary among Chinese vitamin manufacturers because the Chinese government considers them to be voluntary. As a result, some companies may claim that they are compliant with certifications for marketing purposes, but do not put much serious effort into actual implementation or compliance (Enting et al., 2010). However, leading vitamin manufacturing companies have implemented extensive quality assurance and quality control programs because they must comply with strict quality assurance requirements from their export customers in the European Union and the United States. In fact, all reputable vitamin manufacturers and suppliers to the U.S. feed industry can provide detailed information upon customer requests regarding the GMP, ISO 9001, ISO 22000, and HACCP procedures and compliance with FSMA. A summary of certification schemes used by many of the major vitamin manufacturers is provided in Appendix 5. In addition, several Chinese vitamin manufacturing companies provide information and documentation of various quality assurance certifications on their web sites (see Appendix 1). Reputable vitamin manufacturers and premix suppliers are capable of providing the following types of statements to customers upon request:

- Statements verifying the year and type of quality certifications
- Statements of composition, country of origin, and manufacturing location of vitamins
- Statements of source and country of origin of gelatin used in manufacturing vitamins A and $D_{3} \end{tabular}$
- Vitamin product African Swine Fever virus biosecurity safety statements
- Statements of composition, country of origin, and manufacturing location of vitamin premix carriers, diluents, and dust suppression agents
- Statements of non-use of porcine-derived ingredients used to manufacture premixes
- Documents of current Good Manufacturing Practices (GMP's) and Frequently Asked Questions for customers

For example, descriptions of GMP's often include detailed descriptions of the following:

- General company information
- Quality management processes including internal and external third-party audits

- Personnel
- Buildings and facilities
- Process equipment
- Documentation and records
- Material management
- Production preventative controls and hazard analysis
- Packaging and labeling
- Storage and distribution
- Laboratory controls
- Validation and qualification
- Rejection and reuse of material
- Sanitary transport standards
- Foreign supplier verification
- Supply chain controls
- Complaints and recalls
- Social responsibility

It is important to know that there are distinct differences among various quality certification schemes. The FSMA program is a regulatory requirement for pet food and feed manufacturers and importers, which includes GMPs and a food safety plan, but does not include virus monitoring or controls. Use of voluntary quality assurance programs (e.g. ISO, GFSI, GMP+, etc.) depends on customer requirements, but also do not include virus monitoring and control.

Biosecurity programs have been implemented in several vitamin manufacturing companies in China, which are focused on further reducing the risk of ASFv exposure. These programs do undergo a third-party audit to verify compliance (see Appendix 6). If these requirements are not met, partnerships with U.S. vitamin and feed companies are terminated. Although these biosecurity programs are in place, they are not standardized across the entire vitamin manufacturing industry and may require further development.

The biosecurity requirements that have been implemented are as follows:

- 1. All laws and regulations to prevent the spread of infectious diseases, such as ASFv, must be followed.
- 2. Confirm that your employees do not work on a farm, or own, breed, or have contact with swine.
- 3. Do not house or breed any animal in your facility or facility grounds.
- 4. Implement and enhanced pest control program in your facility and facility grounds.
- 5. Work clothes cannot come in contact with any swine, raw pork or pork products, which includes employee meals.
- 6. Establish disinfection points for people and vehicles at entrances of the site, buildings manufacturing your products, and storage facilities, especially for vehicles to and from premix operations. Personnel and visitors entering the facilities should ensure that shoes, clothing, and equipment are disinfected. Employees cannot take work shoes, clothing, and equipment to home or out of facilities.

- 7. Disinfect pallets and containers used for end products before shipping (such as heat-treated pallets or chemical treatments).
- 8. Anyone coming from ASFv infected areas is not allowed to visit the facility.
- 9. Any vehicle coming from and ASFv infected area is not allowed to enter the facility or facility grounds.
- 10. Disinfection methods and the concentration of disinfectant used must be documented and verified. The ASFv can be inactivated by 8/1000 sodium hydroxide (30 minutes), hypochlorites 2.3% chlorine (30 minutes), 3/1000 formalin (30 minutes), Consult your epidemic prevention departments to learn more about disinfectants.

For detailed information on the certification criteria for the various quality assurance schemes, as well as guidelines for biosecurity, foreign supplier verification, and good manufacturing procedures are available by accessing the following links:

FAMI-Q:

https://www.fami-qs.org/home.html

FSMA – Food Safety Modernization Act

https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/food-safetymodernization-act-fsma

GMP+ https://www.gmpplus.org/en

HACCP - Hazard Analysis and Critical Control Points

https://www.fda.gov/food/hazard-analysis-critical-control-point-haccp/haccp-principlesapplication-guidelines

ISO – International Organization for Standardization

https://www.iso.org/certification.html https://www.iso.org/iso-9001-quality-management.html

Global Food Safety Initiative https://www.mygfsi.com/

Biosecurity Guidelines from AFIA https://www.afia.org/pub/?id=E348BF9F-98ED-09DB-A45D-504737FE7AE2

Guidelines for Foreign Supplier Verification Program

https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-rule-foreign-supplier-verification-programs-fsvp-importers-food-humans-and-animals

Good Manufacturing Procedures Guidelines from FSMA

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-235current-good-manufacturing-practice-requirements-food-animals

Are the processes and ingredients used to manufacture vitamins safe?

The time, temperature, and pH conditions used during the vitamin manufacturing process may be adequate to inactivate ASFv and other viruses if they are present. However, a detailed risk assessment of these conditions has not been conducted due to lack of specific process data and uncertainty of the conditions necessary to inactivate the ASF virus. Although the manufacturing processes of each type of vitamin are unique and proprietary, there are several common attributes:

- 1. There is no separate manufacturing process for human food grade and animal feed grade vitamin manufacturing. All processes used in these "pharmaceutical grade" facilities adhere to strict hygiene and sanitation standards. The same equipment, processes and procedures are used to produce both human food grade and animal feed grade vitamins.
- 2. All vitamin manufacturing facilities have various quality control and quality assurance certification schemes in place. Although many of the manufacturing facilities supplying vitamins to the U.S. comply with these standards through third party audits, it is uncertain if all Chinese manufacturing facilities are in compliance.

Gelatin derived from pigskin is used to coat vitamin A and D₃ to preserve potency and biological activity during transport and storage before being added to complete feeds. Although gelatin derived from pigskin may be a source of viruses in these vitamins, manufacturers use multiple thermal treatments during multiple extraction and sterilization processes that are likely to inactivate viruses if they are present. Although the general thermal processing conditions are similar among gelatin manufacturers (**Figure 2**), they may vary somewhat from one manufacturer to another. The following are two examples of current processes described by vitamin manufacturers:

- 1. Raw material (pigskin) may be obtained from countries that are either endemic with ASFv (i.e. China), or countries of origin that are ASFv-free, depending on the vitamin manufacturing company. Pigskin is processed $\geq 60^{\circ}$ C for ≥ 6 hours followed by UHT sterilization at 138°C for ≥ 4 seconds and dried at 28 to 55°C.
- 2. Pigskin gelatin is prepared at pH < 3 for at least 5 hours. After rinsing, it is placed in hot water at $\geq 50^{\circ}$ C to extract gelatin broth for ≥ 3 hours. During the evaporation process, the gelatin broth is processed at a temperature of 55 to 98°C followed by a double heat treatment of $\geq 115^{\circ}$ C for ≥ 4 seconds.

Figure 2. Overview of gelatin manufacturing processes.

Most vitamin A and D_3 manufacturers in China do not offer gelatin-free products, but two manufacturers have the capability of doing this if purchased in large quantities. A few Chinese vitamin A and D manufacturers have considered using bovine-derived gelatin, but have determined it is not as effective as gelatin derived from pigskin, and bovine-derived gelatin is prohibited in most export markets because of potential risk of BSE/TSE.

Choline chloride is often blended with purified, finely ground corn cobs at the country of origin (e.g. China). Some vitamin suppliers visit and audit corn cob suppliers for choline chloride production to verify that there is a killing step in corn cob carrier production, but the origin and specific processes used to produce ground corn cobs as a carrier for choline chloride are unknown at this time, and need to be investigated as a potential risk factor for virus transmission. Although processes may vary among choline chloride manufacturers, corn cobs are commonly mixed with a corn cob carrier before drying, which ranges from 125-138°C for 2 hours to 140-180°C for 2 hours. However, it is important to note that not all choline chloride products in the market use ground corn cobs as a carrier. For example, Animix LLC (Juneau, WI) provides choline chloride using silica as a carrier instead of corn cobs. In addition, liquid forms of choline chloride are also manufactured by a few companies which do not contain a carrier.

Are packaging materials safe?

Most vitamin suppliers pack purified vitamin products in sealed containers, and have extended chain of custody of the products of up to 120 days. The development and implementation of a formal chain of custody exists for most vitamin manufacturers but there may be opportunities for further refinement https://www.foodsafetymagazine.com/magazine-archive1/junejuly-2014/ingredient-chain-of-custody-impact-on-food-safety/. All vitamin products are required to be packaged in new, unused packaging materials including pallets.

What is the typical length of time from vitamin manufacturing in China until vitamins are consumed by pigs on commercial farms?

Once purified vitamins reach a premix blending facility, there are multiple supplier questionnaires that are reviewed and vetted before blending. This is done on a global basis, and

any concerns identified during this process will lead to an audit of the source facility. To preserve the nutritional value of vitamins and minimize vitamin potency losses, most vitamin suppliers attempt to minimize holding time before vitamins are fed to pigs. Current holding times (about 90 days) from the time of manufacturing to premix manufacturers, and additional holding times before premixes are incorporated into complete feeds at commercial feed mills (about 6 months), is sufficient to achieve the required holding time (up to 39 days) to inactivate ASF virus based on current research results (SHIC, 2019).

What is the risk of cross-contamination of shipments of purified vitamins in the supply chain?

Purified forms of vitamins are called "straights", which is the form of all vitamins imported into the U.S. without blending with premix carriers. Vitamins are not premixed during manufacturing or prior to shipment to the U.S. because of the extra cost that would be incurred due to the added weight of premixes compared with purified forms. Therefore, there is almost no blending with carriers or post-processing at the place of origin (e.g. China).

For many U.S. vitamin suppliers, transportation of vitamins from the factory to distribution center is monitored and regulated. All vehicles are required to be clean, dry, and have non-contaminated equipment. Trailers are closed and protected from rain and dust. No co-loading with other chemicals, pharmaceuticals, meat products or any other goods that could be a potential source of contamination is allowed. Any equipment or trailers used to transport live or dead animals is strictly prohibited, and no animal contact inside or outside of transport vehicles is allowed. All ocean carriers are required to provide clean and undamaged containers. Shipments to the European Union are required to be cleaned and disinfected according to EU law, and carriers must comply with EU regulations (DSM, 2019).

Any damaged bags that may occur from the time of initial packaging until arriving at a U.S. destination are discarded, despite economic loss, and are not re-packed or subsequently used due to liability of loss of potency or cross-contamination with other materials.

Once purified vitamins arrive in the U.S., the containers or packages are stored in warehouses at temperatures of 50 to 60°F. All bags and containers come with a certificate of analysis (or certificate of conformance) indicating when it was manufactured for every lot (batch) of every vitamin. If it is a customer requirement, customized documentation with additional information can be created and provided, but may add additional cost that would be incurred by customers (pork producers).

How are vitamin premixes made?

Supplemental vitamins are required in very small quantities in complete swine diets. To provide convenience and ensure homogenous distribution of vitamins in complete feeds, vitamin or vitamin-trace mineral premixes are formulated and mixed as separate ingredients to add to complete diets. Premixes are manufactured by using carriers or diluents and flow agents to dilute the concentration of vitamins while achieving desired concentrations in complete feed after they are added to the diet. All carriers and diluents used in manufacturing swine vitamin premixes in the U.S. are obtained from sources in North America.

The chemical and physical characteristics of straight vitamins vary substantially, which affects the rate of potency or bioavailability losses during storage before use. Therefore, selection of carriers based on their ability to adsorb (moisture attachment to surface of solids) and absorb (moisture movement into pores and crevices of solids) which causes losses in vitamin potency and bioavailability (BASF, 2000). Carriers are chosen based on their adsorption and absorption capability and cost (**Table 6**). High absorption carriers are not recommended for dry vitamins because they significantly reduce bioavailability (BASF, 2000). Therefore, high and medium adsorption carriers (ground corn cobs, rice hulls, and silica) are commonly used for choline chloride and vitamin E straights to maintain high bioavailability (BASF, 2000). Mineral oil is also commonly added to premixes to reduce dust and improve flowability.

 Table 6. Relative absorption and adsorption properties of commonly used carriers in vitamin premixes (adapted from BASF, 2000)

Absorption and adsorption capability	Carrier
High absorption	Verxite/vermiculite, zeolite
Low absorption	Silica
High adsorption	Wheat midds, corn cob meal, silica
Medium adsorption	Rice hulls
Low adsorption	Limestone

Carriers are used to maintain a homogenous distribution of vitamins in a premix by minimizing segregation during transportation and storage over time. In addition to the types of carriers shown in **Table 6**, wheat bran, ground almond hulls, and soybean meal have been used in manufacturing vitamin premixes (BASF, 2000). Several chemical and physical characteristics of carriers are important for vitamin premixes including particle size (flowability); bulk density (manufacturing throughput and stacking of pallets); low moisture (< 5% to prevent loss of vitamin potency); non-hygroscopic (minimal ability to attract moisture); low lipid content (< 4% to prevent loss of fat-soluble vitamin potency); non-electrostatic; pH (vitamin stability); and dust (**Table 7 and 8**; BASF, 2000; 2018). It is unknown whether any of these physical and chemical characteristics may affect ASFv survival if premixes are contaminated. In addition, it is unknown if the physical and chemical properties of vitamins affect ASFv survival, but a summary of some of these characteristics is provided in **Table 9**.

 Table 7. Selected physical and chemical properties of carriers used in vitamin premixes

 (BASF, 2000)

Carrier	Moisture, %	Dust, %	Hygroscopicity (7 days – water	Adsorbing capacity	pН
			absorption), %		
Ground rice hulls	5.0	0.09	2.25	Medium	6.3
Fine ground limestone	0.2	0.09	0.02	Low	9.2
Coarse ground limestone	0.4	0.04	0.44	Low	9.0
Dried wheat midds	5.0	0.03	11.7	High	6.9
Ground corn cobs	5.0	0.03	8.13	High	5.4
Dicalcium phosphate	2.8	0.09	6.20	-	3.4
Calcium propionate	1.3	1.09	1.66	-	6.7

Vermiculite	5.1	0.04	3.37	Very High	6.3
Silicon dioxide	4.4	1.04	5.75	Very High	6.9

Table 8. Relative ranking of various carriers used in vitamin premixes based on physical and chemical characteristics, impact on vitamin bioavailability, and price (adapted from BASF, 2018)

Carrier	Lipid, %	Bulk density, lbs/cu. ft. (loose)	Impact on vitamin bioavailability	Price	Overall rank (1 = excellent, 10 = poor)
Dried wheat midds	3.6	22	None	Medium	3
Fine ground limestone	0	62	None	Low	7
Ground rice hulls	0.5	19	None	Low	2
Ground corn cobs	0.4	26	None	Low	2
Novasil ^{TM*}	0	34	None	Medium	4
Silicon dioxide	0	14	None	Very High	2
Vermiculite	0	8	Very High	Medium	10

*Novasil Anticaking Agent BASF Co. Floham Park, NJ.

Vitamin	Moisture,	Dust,	Humidity absorption (7 days),	pН
	%	%	%	_
Vitamin A beadlet	4.1	0.05	9.11	5.7
Vitamin D ₃ 500	3.4	0.05	13.35	6.4
Vitamin E 50% SD	1.3	0.13	8.80	6.8
Vitamin E 50% ADS	1.3	0.53	1.77	7.1
MSBC	ND	ND	ND	7.0
MPB	ND	ND	ND	4.0
Biotin 2% SD	7.1	0.53	5.07	4.0
Calcium-d-28 pantothenate	0.41	10-15	8.07	6.8-8.0
Calcium-dl-30 pantothenate	0.41	10-15	15.19	6.8-8.0
Thiamin monohydrate	4.2	0.15	0.40	7.0
Thiamin HCl	4.2	0.15	0.55	3.0
Nicotinic acid	0.08	0.09	0.03	3.4
Niacinamide	0.21	0.07	5.50	6.0
Riboflavin 96% crystalline	0.41	0.15	0.13	5.5
Riboflavin 80% SD	1.34	0.02	3.39	5.6

Are all vitamin product providers reputable?

No. As for almost every feed ingredient in the global market, brokers and traders exist in the vitamin market and may not adhere to strict sanitary standards or purchase vitamins from manufacturers that do not comply with quality assurance standards. As a result, it is essential that vitamin premix purchasers request documentation of compliance with quality assurance

certification and Good Manufacturing Practices. Reputable and reliable vitamin and vitamin premix providers will provide this type of documentation upon request.

What is the additional risk of ASFv transmission in multi-species feed mills compared with single species feed mills?

Previous studies have shown that Porcine Epidemic Diarrhea Virus survives in various feed ingredients and can serve as a source of cross-contamination in feed mills (Schumacher et al., 2017; Huss et al., 2017; Gebhardt et al., 2018; Schumacher et al., 2018). Unfortunately, no studies have been conducted to determine the potential risk of cross-contamination of ASFv in multi-species feed mills if it is present in other imported feed ingredients (e.g. porcine derived feed ingredients) from ASFv endemic countries, and these ingredients are used in manufacturing complete feeds. Pork producers should request country of origin information of all feed ingredients used from their commercial feed mill supplier, especially if manufacturing feeds for multiple species.

Can additional biosecurity and sanitary practices and traceability be implemented in the vitamin supply chain to minimize risk of virus transmission?

A comprehensive risk assessment has not been conducted to identify potential risks of ASFv transmission in existing quality control certification programs. Current quality assurance certification schemes do not specifically address prevention or control of viral pathogens in feed ingredients, but often address bacterial contamination and are general risk assessments of potential non-microbiological hazards. However, some certification programs apply HACCP principles to minimize potential risk of acquiring pathogens from their origin. Therefore, if necessary, vitamin manufacturers and other segments of the vitamin supply chain could adjust their biosecurity and quality assurance programs to prevent known risks of viruses from entering the supply chain as needed. Perhaps the most practical and efficient way to do this is would be to develop a biosecurity module that can be added to existing quality assurance certification programs during time periods deemed as "high risk" for viral contamination, when extra monitoring and controls are needed, and then removed once the risk is no longer a potential concern.

Guidelines for developing a risk-based plan to mitigate virus transmission from imported feed ingredients has been developed (Schettino et al., 2019). This framework involves applying prerequisite programs of raw material controls, production controls, sanitation and maintenance, pest control, and sanitary product transport. These programs can be applied at different steps in the supply chain including manufacturing, sanitation, and transport, which are based on the principles of the Food Safety Modernization Act to prevent or reduce the risk of hazards being present in the final product.

In the future, the use of blockchain technology can provide tremendous benefits and efficiencies for improving feed safety and animal health (Zhang et al., 2019). However, several significant limitations must be overcome to realize its benefits which include: 1) tracking of bulk commodities versus packaged feed products such as vitamins; 2) complete and honest participation of all segments of the supply chain; 3) development of methods and standards

including third-party verification and data sharing protocols; and 4) overcoming lack of economic incentives to attract participants (Zhang et al., 2019).

Successful implementation of blockchain technology in the vitamin supply chain may be possible because of the relatively limited number of manufacturing companies, importers, and premix manufacturers compared with commodity-based segments of the feed industry, which may facilitate complete participation and coordination. Secondly, purified vitamin products and vitamin premixes are packaged with data indicating date of manufacture, lot or batch number, company, and location. Third, vitamin manufacturers have extensive internal data on quality assurance procedures and certification because record keeping and data collection are required as part of these processes. Finally, there may be economic incentives to implement blockchain in the vitamin supply chain to minimize liability risk of recalls because many of these products are also used as human supplements and food products.

Are there effective mitigation treatment strategies that can be used to inactivate ASF in vitamin premixes if it is present?

Unlike other nutrients, vitamins are sensitive to moisture, hygroscopicity (ability to attract moisture), pressure (heat), heat, friction (heat), oxidation, trace minerals (oxidation), pH, and interactions with other ingredients (BASF, 2018; DSM, 2016). Therefore, use of mitigation strategies that have been shown to be effective for PEDv, such as additives, pH, and thermal treatment will likely reduce vitamin bioavailability to varying amounts, even if they are effective in inactivating ASFv.

Unfortunately, unlike PEDv, very little is known about the conditions necessary to inactivate ASFv if it is present in feed or feed ingredients. African Swine Fever virus is highly resistant to low temperatures but can be inactivated by heat at 56°C for 70 minutes and 60°C for 20 minutes (OIE, 2009). However, the extent of post-manufacturing thermal treatment of purified vitamins and premixes can cause significant losses in bioavailability and nutritional value. For example, using a minimal pelleting temperature of 66 to 70°C can result in losses in vitamin potency of 1 to 35% (65-99% stability; Table 10; BASF, 2018). If greater pelleting temperature is used (106 to 110°C) is used, losses in vitamin potency are further reduced (5 to 77%; Table 10; BASF, 2018). Similarly, extrusion involves use of high temperatures (91 to 145°C), and is considered to have the greatest effect on reducing vitamin activity when combined with pressure, moisture, and redox reactions during the process (BASF, 2018). Vitamin losses from extrusion can range from 6 to 95% (5-94% stability; Table 10; BASF, 2018). Additionally for some vitamins, losses are increased when they are combined with trace minerals in concentrated premixes because of increased redox reactions. Table 11 shows the industry average vitamin stability in pelleted or extruded feed storage over time (BASF, 2018). Note that the fat soluble vitamins (A, D, E, and K) and vitamin C (ascorbic acid) are much more susceptible to vitamin potency losses (decreased retention) over extended storage than the B vitamins. Therefore, although specific holding times for vitamin containing premixes and feeds may be effective for inactivating ASFv if it is present, it could also lead to reduced vitamin potency and nutritional value, depending on the environmental temperatures during the holding time. Selecting the vitamin product forms that are intended to improve the stability of these vitamins is an important consideration.

Vitamin	Pelleting, 66-70°C	Pelleting, 106-110°C	Extrusion, 141-145°C
Vitamin A beadlet cross-link	98	83	62
Vitamin A beadlet non-S. cong. non-XL	87	57	40
Vitamin D ₃ beadlet (A/D ₃) cross- link	97	89	86
Vitamin D ₃ S. congealed beadlet	96	83	83
Vitamin D ₃ SD	95	77	57
Vitamin D ₃ drum dried	94	73	66
Vitamin E acetate, 50% silica	97	88	81
Vitamin E alcohol, natural	75	23	5
MSBC	80	44	20
MSB coated	85	60	36
MSB	70	31	7
MNB	86	62	38
MPB	82	55	30
Thiamin HCl	93	63	50
Thiamin mono	96	77	77
Riboflavin	95	78	91
Pyridoxine HCl	94	75	73
Vitamin B ₁₂	99	94	86
Calcium pantothenate	95	78	75
Folic acid	95	77	64
Biotin	95	77	63
Niacin	96	80	64
Niacinamide	94	76	60
Ascorbic acid	65	25	5
Ethylcellulose coated ascorbic acid	67	30	10
Fat coated ascorbic acid	85	60	38
Ascorbyl phosphate	97	89	83
Choline chloride	99	95	94

Table 10. Comparison of average vitamin stability (% of original potency) after pelleting at 66-70°C and 106-110°C, and extrusion at 141-145°C (adapted from BASF, 2018)

Vitamin	1	6	12	Average loss per
	month	months	months	month, %
Vitamin A beadlet cross-link	94	70	40	7.6
Vitamin A beadlet non-S. cong. non-XL	86	25	0	28.8
Vitamin D ₃ beadlet (A/D ₃) cross-link	95	80	45	6.7
Vitamin D ₃ S. congealed beadlet	95	80	45	6.7
Vitamin D ₃ SD	92	71	30	10.0
Vitamin D ₃ drum dried	90	65	29	10.2
Vitamin E acetate, 50% silica	96	77	67	3.4
Vitamin E alcohol, natural	35	0	0	28.4
MSBC	82	30	5	22.1
MSB coated	87	50	25	11.4
MSB	60	5	0	27.7
MNB	84	45	31	9.7
MPB	76	40	24	11.7
Thiamin HCl	80	43	45	6.8
Thiamin mono	88	60	55	5.1
Riboflavin	92	54	78	2.1
Pyridoxine HCl	95	59	67	3.5
Vitamin B ₁₂	92	70	67	3.5
Calcium pantothenate	97	82	81	1.8
Folic acid	92	53	58	4.6
Biotin	93	68	81	1.8
Niacin	94	79	81	1.7
Niacinamide	94	70	71	2.9
Ascorbic acid, crystalline	82	26	0	27.3
Ethylcellulose coated ascorbic acid	84	20	0	29.4
Fat coated ascorbic acid	87	35	17	14.0
Ascorbyl phosphate	95	80	62	4.1
Choline chloride	99	90	92	0.7

Table 11. Industry average vitamin retention (% of original potency) in pelleted or extruded feed storage over time (adapted from BASF, 2018)

It is unknown if eBeam irradiation may be effective in inactivating the ASFv, as has been shown for PEDV (Trudeau et al., 2016), nor the effects, if any on vitamin stability. However, the relatively high cost and impracticality of using irradiation for potentially decontaminating premixes make this possible approach infeasible.

African Swine Fever virus is also inactivated at pH < 3.9 or > 11.5 in serum-free medium (OIE, 2009), but these extremes in pH are not found in feed ingredients or complete feeds, and additions of acids or bases would likely not only affect diet palatability, but also reduce vitamin stability. While most vitamins are stable at pH between 5.5 to 7.5, vitamin A, D₃, pantothenic acid, and folic acid are very sensitive to acidic pH, while vitamin E, K, thiamin, riboflavin, pyridoxine, and ascorbic acid are very sensitive to basic pH (BASF, 2000).

Several chemicals have been shown to be effective in inactivating ASFv. This virus is susceptible to ether and chloroform (OIE, 2009), and is inactivated by using 1% formaldehyde, 0.03% to 0.0075% sodium hypochlorite, 2% caustic soda solution, formic acid and glutaraldehyde, 1% sodium or calcium hydroxide, phenols (lysol, lysephoform, and creolin), Virkon (1:100), Lysoformin, Desoform, Octyldodeceth-20, and organic acids (Shairai et al., 2000; Gallina and Scagliarini, 2010). While these chemicals at these concentrations may be useful for cleaning and sanitizing trucks and surfaces, they cannot be used in treating contaminated feed. **Table 12** provides a list of U.S. Environmental Protection Agency registered disinfectant products for use in livestock buildings, equipment, transport vehicles, show baths and human footwear against ASFv (USDA APHIS, 2011).

EPA	Product Name	Manufacturer	Acive Ingredients
Registration No.			
11-25	Pheno-Cen Germicidal Detergent	Central Solutions, Inc.	o-phenylphenol, potassium salt p-tert- amylphenol, potassium salt potassium 2-benzyl- 4-chlorophenate
211-62	Low pH Phenolic 256	Central Solutions, Inc.	o-phenylphenol, 2- benzyl-4- chlorophenol
69470-37	Clearon Bleach Tablets	Clearon Corp.	Sodium dichloro-s- triazinetrione
71654-6	Virkon S	E.I. du Pont de Nemours & Company	Sodium chloride, potassium peroxymonosulfate
71847-2	KlorKleen	Medentech Ltd.	Sodium dichloro-s- triazinetrione
71847-6	Klorsept	Medentech Ltd.	Sodium dichloro-s- triazinetrione

Table 12. Chemical disinfectants registered by the U.S. Environmental Protection Agency			
for use against African Swine fever virus (adapted from Juszkiewicz et al., 2019)			

Unfortunately, the minimum infectious dose of ASFv is very low and has been determined to be 10^{0} 50% tissue culture infectious dose (TCID₅₀) in liquid and 10^{4} (TCID₅₀) for a one-time exposure in feed (Niederwerder et al., 2019). These researchers also reported that the median infectious dose was $10^{1.0}$ TCID₅₀ in liquid and $10^{6.8}$ TCID₅₀ in feed, with higher doses required for infection in plant-based feed ingredients (Niederwerder et al., 2019). The ASFv is very unique (large double stranded DNA virus) in its structural, replication, and repair characteristics compared with single stranded DNA, double stranded RNA, and single stranded RNA viruses, which makes it very stable and extremely difficult to completely inactivate under practical conditions to avoid risk of infection (Declan Schroeder, personal communication). Because of these unique properties, use of published data for RNA virus inactivation to predict ASFv inactivation is not a valid approach (Declan Schroeder, personal communication).

Summary of potential risk factors for ASF virus contamination/transmission in the vitamin supply chain

- 1. Purchasing vitamin products from unconventional brokers and traders that do not provide necessary documentation of country of origin, quality assurance, and sanitary transport procedures.
- 2. Cross-contamination of vitamin premixes from imported feed ingredients (especially porcine derived) and pet foods in multi-species commercial feed mills.
- 3. Use of gelatin derived from pigskin when manufacturing vitamin A and D₃.
- 4. Use of ground corn cobs as a carrier during the choline chloride manufacturing process.

Length of time involved with chain of custody (up to 120 days) and common holding times (up to 180 days) in commercial premix facilities exceeds required holding time for 99.99% virus degradation (up to 39 days; SHIC, 2019).

References

Barroeta, A.C., M.D. Baucells, A. Blanco Pérez, S. Calsamiglia, R. Casals, R. Cepro Briz, R. Davin, G. Gonzalez, J.M. Hernandez, B. Isabel, C. Lopez Bote, I.A. Rey, M. Rodriguez, J. Sanz, M.F. Sota-Salanova, and G. Weber. 2012. Optimum Vitamin Nutrition – In the production of quality animal foods. J. Linden ed. <u>http://www.optimumvitaminnutrition.com/</u>

BASF. 2018. Vitamins in Animal Nutition and Premixing – A BASF Practical Field Manual. 1st Ed., M.B. Coelho ed., BASF Corp., Florham Park, NJ.

BASF. 2000. Vitamins – One of the Most Important Discoveries of the Century. Animal Nutrition 6th Ed., Documentation DC 0002. BASF Corp., Florham Park, NJ.

Dee, S.A., F.V. Bauermann, M.C. Niederwerder, A. Singrey, T. Clement, M. de Lima, C. Long, G. Patterson, M.A. Sheahan, A.M.M. Stolan, V. Petrovan, C.K. Jones, J. De Jong, J. Ji, G.D. Spronk, L. Minion, J. Christopher-Hennings, J.H. Zimmerman, R.R.R. Rowland, E. Nelson, P. Sundberg, and D.G. Diel. 2018. Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE 13(3):e0194509. https://doi.org/10.1371/journal.pone.0194509

DSM. 2016. DSM vitamin supplementation guidelines 2016 for animal nutrition. <u>https://www.feedstuffs.com/sites/feedstuffs.com/files/Vitamin%20Supplement%20Guidelines.pd</u> <u>f</u>

Enting, I., B. Wang, X. Zhang, G. van Duinkerken. 2010. The animal feed chain in China – Opportunities to enhance quality and safety arrangements. Dutch Ministry of Agriculture, Nature and Food Quality, LNV BO-10-010-125.

Gallina, L., and A. Scagliarini. 2010. Virucidal efficacy of common disinfectants against orf virus. Vet. Rec. 166:725-726.

Gebhardt, J.T., R.A. Cochrane, J.C. Woodworth, C.K. Jones, M.C. Niederwerder, M.B. Muckey, C.R. Stark, M.D. Tokach, J.M. DeRouchey, R.D. Goodband, J. Bai, P.C. Gauger, Q. Chen, J. Zhang, R.G. Main, and S.S. Dritz. 2018. Evaluation of the effects of flushing feed manufacturing equipment with chemically treated rice hulls on porcine epidemic diarrhear virus cross-contamination during feed manufacturing. J. Anim. Sci. 96:4149-4158.

Huss, A.R., L.L. Schumacher, R.A. Cochrane, E. Poulsen, J. Bai, J.C. Woodworth, S.S. Dritz, C.R. Stark, and C.K. Jones. 2017. Elimination of porcine epidemic diarrhea virus in an animal feed manufacturing facility. PLoS ONE 12(1): e0169612. doi:10.1371/journal.pone.0169612

Juszkiewicz, M., M. Walczak, and G. Woźniakowski. 2019. Characteristics of selected active substances used in disinfectants and their virucidal activity against ASFV. J. Vet. Res. 63:17-25.

National Research Council. 2012. Nutrient Requirements of Swine, 11th revised ed., The National Academies Press, Washington, D.C.

Niederwerder, M.C., A.M.M. Stoian, R.R.R. Rowland, S.S. Dritz, V. Petrovan, L.A. Constance, J.T. Gebhardt, M. Olcha, C.K. Jones, J.C. Woodworth, Y. Fang, J. Liang, and T.J. Hefley. 2019. Infectious dose of African Swine Fever virus when consumed naturally in liquid or feed. Emerg. Infect. Dis. 25:891-897.

Schettino, D.N., J.L. van de Ligt, F. Sampedro, G.C. Shurson, and P.E. Urriola. 2019. Guidelines for developing a risk-based plan to mitigate virus transmission from imported feed ingredients. White paper, Swine health Information Center, 44 pp.

Shirai, J., T. Kanno, Y. Tsuchiya, S. Mitsubayashi, and R. Seki. 2000. Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses. J. Vet. Med. Sci. 62:85-92.

Schumacher, L.L. A.R. Huss, R.A. Cochrane, C.R. Stark, J.C. Woodworth, J. Bai, E.G. Poulsen, Q. Chen, R.G. Main, J. Zhang, P.C. Gauger, A. Ramirez, R.J. Derscheid, D.M. Magstadt, S.S. Dritz, and C.K. Jones. 2017. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility. PLoS ONE 12(11): e0187309. https://doi.org/10.1371/journal.pone.0187309

Schumacher, L.L., R.A. Cochrane, A.R. Huss, J.T. Gebhardt, J.C. Woodworth, C.R. Stark, C.K. Jones, J. bai, R.G. Main, Q. Chen, J. Zhang, P.C. Gauger, J.M. DeRouchey, R.D. Goodband, M.D. Tokach, and S.S. Dritz. 2017. Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing. J. Anim. Sci. 96:4562-4570.

Swine Health Information Center. 2019. Holding time calculations for feed ingredients to mitigate virus transmission. Factsheet, May 6, 2019.

Stone, S.S., and W.R. Hess. 1973. Effects of some disinfectants on African Swine Fever virus. Appl. Microbiol. 25:115-122.

Trudeau, M.P., H. Verma, F. Sampedro, P.E. Urriola, G.C. Shurson, and S.M. Goyal. 2017. Environmental persistence of porcine coronaviruses in feed and feed ingredients. PLoS ONE 12:e0178094. <u>https://doi.org/10.1371/journal.pone.0178094</u>.

Trudeau, M.P., H. Verma, F. Sampedro, P.E. Urriola, G.C. Shurson, J. McKelvey, S.D. Pillai, and S.M. Goyal. 2016. Comparison of thermal and non-thermal processing of swine feed and the use of selected feed additives on inactivation of Porcine Epidemic Diarrhea Virus (PEDV). PLoS ONE 11(6):e0158128. doi:10.1371/journal.pone.0158128

USDA. 2019. Non-animal origin feed ingredient risk evaluation framework: scoping. <u>https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/swine/nofi-scope.pdf</u>

USDA APHIS. 2011. Potential pesticides to use against the causative agents of selected foreign animal diseases in farm settings. www.aphis.usda.gov/animal_health/emergency_management/ downloads/fad_epa_disinfectants.pdf.

World Organisation for Animal Health – OIE. 2009. Technical disease card for African swine fever,

www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AFRICAN%20SWINE%20 FEVER.pdf.

Zhang, Y., S. Lee, and J.L.G. van de Ligt. 2019. Blockchain technology and the potential applicability in the feed industry. College of Veterinary Medicine, University of Minnesota. 51 pp.

Acknowledgements

Much of the content of this manuscript is a compilation of information obtained from the major U.S. vitamin and premix manufacturers and importers obtained during the African Swine Fever-Vitamin Supply Chain Workshop conducted at the University of Minnesota on April, 29, 2019. We appreciate the many contributions of the following workshop participants:

University of Minnesota - Dr. Jerry Shurson, Dr. Pedro Urriola, Dr. Jennifer van de Ligt, Dr. Declan Schroeder, Ms. Michaela Trudeau, and Dr. Daniella Schettino

READYinc. - Ms. Polly Ligon Sullivan

Swine Health Information Center - Dr. Paul Sundberg

National Pork Board - Dr. Dave Pyburn

National Pork Producers Council - Dr. Liz Wagstrom

American Association of Swine Veterinarians - Dr. Harry Snelson

American Feed Industry Association - Ms. Leah Wilkinson

Adisseo - Mr. Phil Kemp

ADM - Ms. Camissa Hummel, Dr. Dan Jones

Cargill - Ms. Brigette Shelley

DSM - Dr. Jon Bergstrom, Ms. Marg Wheeler, Ms. Joan Ji

JNJ Oriental - Mr. Jonathan Gillaspie

Land O' Lakes/Nutra Blend - Ms. Kayla Knudsen, Dr. Aileen Joy (AJ) Mercado, Dr. Ben Warren, Mr. Gabe Adcock

VitaPlus - Mr. Al Gunderson

Additional information was obtained from published vitamin company references, peer-reviewed scientific journal publications, and personal communications. Special thanks to Dr. Jon Bergstrom (DSM), Mr. Jon Gillespie (JNJ Oriental), Mr. Phil Kemp (Adisseo), Dr. Mike Coehlo (BASF), and Ms. Brigette Shelley (Cargill) for their many valuable additional technical contributions to this report.

We also thank Dr. Jon Bergstrom (DSM), Dr. Fernando Sampedro (University of Minnesota), Dr. Paul Sundberg (Swine Health and Information Center), Dr. Jennifer van de Ligt University of Minnesota), Dr. Ben Warren (Land O' Lakes), and Ms. Brigette Shelley (Cargill) for their thoughtful comments and critical review of this manuscript.

Appendix 1. Major vitamin manufacturing companies, vitamin products, and manufacturing location.

Vitamin	Trademark	Manufacturing Location
Vitamin A	Microvit® A Supra 1000	France
Vitamin AD ₃	Microvit® AD ₃ Supra 1000-200	France
Vitamin E	Microvit® E Promix 50	France or China
Vitamin B ₇ (biotin)	Microvit® B7 Promix Biotin 2%	France or China

Table A1.1. Adisseo	vitamin produc	ts, trademark, and	l country	of manufacturing

Table A1.2. Adisseo vitamin products manufactured by partner suppliers, trademark, and
country of manufacturing

Vitamin	Trademark	Manufacturing Location
Vitamin D ₃	Microvit® D ₃ Promix 500	China
Vitamin K ₃	Microvit® K ₃ Promix MNB	China
	96%	
Vitamin B ₁ (thiamin)	Microvit [®] B ₁ Promix Thiamin	China
	Mono	
Vitamin B ₂ (riboflavin)	Microvit® B ₂ Supra 80	Germany
Vitamin B ₃ (niacin)	Microvit® B ₃ Promix Niacin	China or Switzerland
Vitamin B ₃ (niacinamide)	Microvit [®] B ₃ Prosol	China
	Niacinamide	
Vitamin B ₅ (pantothenic acid)	Microvit® B ₅ Promix D-Calpan	China
Vitamin B ₆ (pyridoxine)	Microvit [®] B ₆ Promix	China
	Pyridoxine	
Vitamin B ₇ (biotin)	Microvit® B7 Promix Biotin	France
	10%	
Vitamin B ₇ (biotin)	Microvit® B7 Promix Biotin	China
	98.5%	
Vitamin B ₉ (folic acid)	Microvit® B ₉ Promix Folic Acid	China
Vitamin B ₉ (folic acid)	Microvit [®] B ₉ Supra 100	China
Vitamin B ₁₂	Microvit® B ₁₂ Promix 10000	China

Vitamin	Trademark	Manufacturing Location
Vitamin A	Lutavit® A 500 Plus	Germany
	Lutavit® A 500 S NXT	
	Lutavit® A 1000 NXT	
	Lutavit [®] A palmitate	
	Lutavit [®] A propionate	
Vitamin AD ₃	Lutavit® A/D ₃ 1000/200	Germany
Vitamin E	Lutavit® E 50	Germany
	Lutavit® E 50 S	
Vitamin B ₂ (riboflavin)	Lutavit® B ₂ SG80	S. Korea
Vitamin B ₅ (pantothenic acid)	Lutavit® Calpan 98%	Germany
Choline chloride	Lutavit [®] Choline chloride	Germany

 Table A1.3. BASF vitamin products, trademark, and country of manufacturing

Table A1.4. DSM vitamin products	, trademark, and country of manufacturing
----------------------------------	---

Vitamin	Trademark	Manufacturing Location
Vitamin A	ROVIMIX® A 1000	Sisseln, Switzerland
	ROVIMIX® AD ₃ 1000/200	Sisseln, Switzerland
	ROVIMIX® A 500 WS	Village-Neuf, France
Vitamin D ₃	ROVIMIX® D ₃ 500 SD	Village-Neuf, France
	ROVIMIX® D ₃ 500 SD	Belvidere, NJ, USA
	ROVIMIX® HY-D 1.25% SD	Belvidere, NJ, USA
Vitamin E	ROVIMIX® E 50% ADS	Belvidere, NJ, USA
	ROVIMIX® E 50% ADS	Sisseln, Switzerland
	ROVIMIX® E 50% SD	Village-Neuf, France
	ROVIMIX® E 50% SD	Belvidere, NJ, USA
Vitamin B ₁ (thiamin)	ROVIMIX® B ₁	Grenzach, Germany
Vitamin B ₂ (riboflavin)	ROVIMIX® B2 80 SD	Grenzach, Germany
Vitamin B ₅ (pantothenic acid)	ROVIMIX [®] Calpan	Daliry, Scotland
Vitamin B ₆ (pyridoxine)	ROVIMIX® B ₆	China
Vitamin B ₇ (biotin)	ROVIMIX [®] Biotin	Village-Neuf, France
	ROVIMIX [®] Biotin	Belvidere, NJ, USA
	ROVIMIX® Biotin HP	Village-Neuf, France
	ROVIMIX® Biotin HP	Belvidere, NJ, USA
Vitamin B ₉ (folic acid)	ROVIMIX® Folic 80 SD	Village-Neuf, France
	ROVIMIX® Folic 80 SD	China
Vitamin C	ROVIMIX® Stay-C® 35	Village-Neuf, France
	ROVIMIX® Stay-C® 50	Village-Neuf, France
	ROVIMIX® C-EC	Daliry, Scotland
Beta-carotene	ROVIMIX [®] Beta-carotene	Village-Neuf, France
	10%	

Table A1.5. DSM vitamin products manufactured by partner suppliers and country ofmanufacturing

Vitamin	Trademark	Supplier	Manufacturing Location
Vitamin B ₃	ROVIMIX® Niacin	Lonza	Switzerland
(Nicotinates)	ROVIMIX®	Lonza	China
	Niacinamide		
Vitamin K ₃	MPB	Dirox	Uruguay
	MNB	Brother	China
		Enterprises	China
		Chongqing	Uruguay
		Minfeng	
		Dirox	
	MSBC	Brother	China
		Enterprises	China
		Chongqing	Uruguay
		Minfeng	
		Dirox	
Vitamin B ₁₂	Vitamin B ₁₂	Sanofi-Aventis	France

Vitamin product	Company	Manufacturi ng location (province)
Vitamin A	Zhejiang Medicine Co., Ltd.	Zhejiang
	http://www.china-zmc.com.cn/en/index.php?c=about&m=company	
	Zhejiang NHU Company, Ltd.	Shandong
	http://www.cnhu.com/en/	and Zhejiang
	Xiamen Kingdomway Vitamin Inc.	Fujian
	http://kdw-usa.com/	
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	
Vitamin	Zhejiang Medicine Co., Ltd.	Zhejiang
D_3	http://www.china-zmc.com.cn/en/index.php?c=about&m=company	
	Xinfa Pharmaceutical Co., Ltd.	Shandong
	http://www.sdxinfa.cn/abouten/id/1.html	
	Zhejiang NHU Company, Ltd.	Shandong
	http://www.cnhu.com/en/	and Zhejiang
	Xiamen Kingdomway Vitamin Inc.	Fujian
	http://kdw-usa.com/	-
	Zhejiang Garden Biochemical High-Tech Co., Ltd.	Zhejiang
	http://en.hybiotech.com/index/FrontColumns_navigation01-	
	1478744982367FirstColumnId=49.html	
	Taizhou Hisound Chemical Co., Ltd.	Zhejiang
	http://www.hisoundpharma.com/en/us.aspx	5 6
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	6 6
Vitamin	Zhejiang Medicine Co., Ltd.	Zhejiang
AD ₃	http://www.china-zmc.com.cn/en/index.php?c=about&m=company	
	Zhejiang NHU Company, Ltd.	Shandong
	http://www.cnhu.com/en/	and Zhejiang
	Xiamen Kingdomway Vitamin Inc.	Fujian
	http://kdw-usa.com/	
Vitamin E	Zhejiang Medicine Co., Ltd.	Zhejiang
	http://www.china-zmc.com.cn/en/index.php?c=about&m=company	8
	Zhejiang NHU Company, Ltd.	Shandong
	http://www.cnhu.com/en/	and Zhejiang
	Nenter & Co., Inc.	Hubei
	http://www.hxchem.net/English/companydetailnenter.html	114001
	Jilin Beisha Pharmaceutical Co., Ltd.	Jilin
	http://www.jilinbeisha.com/	51111
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	Guanguong
Vitamin	Brother Technology Co., Ltd.	Zhejiang
K ₃	Haining Peace Chemical Co.	Zhejiang
113	http://www.peacechem.com/company-e/id/12.html	
Thiamine	Jiangsu Brother Vitamin Co., Ltd.	Jiangsu
(\mathbf{B}_1)	http://www.brother.com.cn/en/About_Subsidiary.aspx	Jiangsu
(D])	Xinfa Pharmaceutical Co., Ltd.	Shandong
		Shandong
	http://www.sdxinfa.cn/abouten/id/1.html	Chan-h-!
	Jiangxi Tianxin Pharmaceutical Co.	Shanghai
	http://www.jxtxpharm.com/main_en.html	
	Huazhong Pharmaceutical Co. Ltd.	Guangdong

 Table A1.6. Company, web site, and manufacturing location (province), of vitamin products produced in China

	http://www.hpchuazhong.com/home/cn/	
Riboflavin	Hubei Guangji Pharmaceutical Co., Ltd.	Hubei
(B ₂)	http://guangjipharm.com/en/index.asp	
	Xinfa Pharmaceutical Co., Ltd.	Shandong
	http://www.sdxinfa.cn/abouten/id/1.html	
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	
	Shandong NB Technology Co., Ltd	Shandong
	http://www.nbgroup.cn/En/	Ũ
Niacinami	Lonza Guangzhou Nasha, Ltd.	Guangdong
de (B ₃)	https://www.lonza.com/custom-manufacturing/capabilities-overview/our-	0 0
	sites/guangzhou-nansha-china.aspx	
	Jiangsu Brother Vitamin Co., Ltd.	Jiangsu
	http://www.brother.com.cn/en/About Company.aspx	C
	Zhejiang Lanbo Biotechnology Co., Ltd.	Zhejiang
	http://en.lanbobio.com/#	5 0
	Shandong Kunda Biotechnology, Ltd.	Shandong
	http://www.kunda-bio.com/about_e.html	6
	Anhui Redpont Biotechnology Co., Ltd.	Anhui
	http://www.china-redpont.cn/en/	
D-	Hangzhou Xinfu Science & Technology Co., Ltd.	Zhejiang
Calcium pantothen	http://en.yifanyy.com/zhejiang_center.html	Znojiung
	Xinfa Pharmaceutical Co., Ltd.	Shandong
ate (B_5)	http://www.sdxinfa.cn/abouten/id/1.html	Shandong
ute (253)	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	Guunguong
	Brother Enterprises Holding Co., Ltd.	Zhejiang
	http://www.brother.com.cn/en/About_Company.aspx	Zhejiang
Pyridoxin	Xinfa Pharmaceutical Co., Ltd.	Shandong
e (B ₆)	http://www.sdxinfa.cn/abouten/id/1.html	Shandong
	Jiangxi Tianxin Pharmaceutical Co.	Shanghai
	http://www.jxtxpharm.com/main_en.html	Shanghai
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	Guanguong
Biotin		Thailang
	Fuyang Kexing Biochem Co., Ltd. http://www.kexing-biochem.com/contact_e.htm	Zhejiang
(B ₇)		Chandens
	Zhejiang NHU Company, Ltd.	Shandong
	http://www.cnhu.com/en/	and Zhejiang
	Zhejiang Medicine Co., Ltd.	Zhejiang
	http://www.china-zmc.com.cn/en/index.php?c=about&m=company	<u>C</u>
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
F 1' ' 1	http://www.hpchuazhong.com/home/cn/	01 1
Folic acid (B ₉)	Xinfa Pharmaceutical Co., Ltd.	Shandong
	http://www.sdxinfa.cn/abouten/id/1.html	T .
	Changzhou Xinhong Pharmaceutical Chemical Technology Co., Ltd.	Jiangsu
	https://czxhyy88.en.ec21.com/	.
	Nantong Changhai Food Additive Co., Ltd.	Jiangsu
	http://www.niutang.com/contact/	
	Jiangxi Tianxin Pharmaceutical Co.	Shanghai
	http://www.jxtxpharm.com/main_en.html	
	Jilin Beisha Pharmaceutical Co., Ltd.	Jilin
	http://www.jilinbeisha.com/	
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	
	NCPC Hebei Lexin Pharmaceutical Co. Ltd.	Hebei

Vitamin	Xiamen Kingdomway Vitamin Inc.	Fujian
B ₁₂	http://kdw-usa.com/	· ·
	CSPC Hebei Huarong Pharmaceutical Co., Ltd.	Hebei
	https://huarongpharma.en.ec21.com/company_info.jsp	
	Hebei Ruixin Biotechnology Co., Ltd.	Hebei
	http://english.ruixinbiotech.com/	
	Huazhong Pharmaceutical Co. Ltd.	Guangdong
	http://www.hpchuazhong.com/home/cn/	
Vitamin C	Shandong Tianli Pharmaceutical Co., Ltd. Vitamin Branch Company	Shandong
	http://www.lianmengintl.com/index.php?m=about us factory&c=about us factory	
	<u>&a=init&id=5</u>	
	Hebei Tianyin Biotech Co., Ltd.	Hebei
	http://www.hxchem.net/English/companydetailisabelzhou0106.html	
	CSPS Pharmaceutical Group., Ltd WeiSheng	Hebei
	https://www.cspc.com.hk/en/global/home.php	
Choline	Liaoning Biochem Co., Ltd.	Liaoning
chloride	http://en.choline-chloride.cn/index.php	
	Shandong NB Technology Co., Ltd	Shandong
	http://www.nbgroup.cn/En/	
	Shandong Jujia Biotech. Co. Ltd.	Shandong
	http://www.jujiagroup.com/en/list.php?fid=44	
	Shandong Aocter Chemical	Shandong
	http://en.aocter.net/copyof_index.html	
	Hebei Be-Long Corporation	Hebei
Carnitine	Northeast Pharmaceutical Group Co., Ltd	Shenyang
	http://www.nepharm.com/	

Appendix 2. Photos of vitamin manufacturing facilities in China

Source: Shandong Xinfa, No.1 Tongxing Road, Kenli, Dongying City, Shandong, China http://www.sdxinfa.cn/abouten/id/1.html

Figure A2.1. Outdoor premises of vitamin manufacturing facility

Figure A2.2. Employee attire used to follow Good Manufacturing Practices (GMP)

Figure A2.3. Vitamins are manufactured in sanitary and well-maintained facilities

Figure A2.4. Sanitary stainless-steel vitamin product dryers

Figure A2.5. Automatic pallet packing of finished vitamin product

Figure A2.6. Secure storage of finished vitamin products in warehouse

Source: Zhejiang NHU Company Ltd, No.4 Jiangbei Road, Yulin Street, Xinchang County, Zhejiang Province <u>http://www.cnhu.com/en/</u>

Figure A2.7. Biosecurity using dressing rooms separated from the vitamin production facility

Figure A2.8. Sanitary and well-maintained vitamin production areas

Figure A2.9. Locked, secure, and isolated raw material tanks

Appendix 3. Flow charts of examples of various vitamin production processes

Figure A3.1. Vitamin A 650 (feed grade) production process Source: Zhejiang Medicine Co., Ltd.

Figure A3.2. Vitamin A 1000 (feed grade) production process Source: Zhejiang Medicine Co., Ltd.

Figure A3.3. Vitamin D₃ 500 (feed grade) production process Source: Zhejiang Medicine Co., Ltd.

Figure A3.4. Vitamin E/all-rac-alpha-tocopheryl acetate 50% (feed grade) production process Source: Zhejiang Medicine Co., Ltd.

> All-rac-alpha-tocopheryl acetate Mixing granulation Sieving Critical Control Point 1 Physical hazard control Vitamin E 50% (feed grade)

Figure A3.5. Vitamin B2 (riboflavin; 80% SD feed grade) production process Source: Guangji Pharmaceutical (Mengzhou) Co., LTD, Mengzhou City, Henan Province, China

Figure A3.6. Vitamin B5 (calcium pantothenic acid) production process Source: BASF (2018)

Figure A3.7. Choline chloride production process Source: BASF (2018)

Table A3.1. Overview of key ingredients and production processes used to produce forms of vitamin K and various B vitamin products

Vitamin	Key ingredients	Process	Production stages
Vitamin K ₃ (MNB)	Sodium dichromate,	Synthesis	Oxidation
	sulfuric acid		Filtration
			Sulfonation
			Crystallization
			Centrifugation
			Washing
			Nicotinamide + condensation
			Centrifugation
			Drying
			Mixing
			Sieving
			Packing
Vitamin K ₃ (MSB)	Sodium dichromate,	Synthesis	Oxidation
	sulfuric acid	o ynthesis	Filtration
	sulfuric acid		Sulfonation
			Crystallination
			Centrifugation
			Washing
			Drying
			Mixing with sulfuric acid
			Sieving
		0 1	Packing
Thiamine (B ₁)	Thiothianmine,	Synthesis	Cyclization
	hydrogen peroxide		Oxidation
			Salification
			Neutralization
			Decoloration
			Centrifugation
			Washing
			Drying
			Packing
Riboflavin (B ₂)	Culture medium	Fermentation	Raw material addition
			Disinfection of raw material
			Main fermentation
			Centrifugation
			Crystallization
			Filtration
			Sieving
			Spray drying
			Blending
			Packing
Niacin (B ₃)	3-picoline	Synthesis	Hydrolysis
· -/			Filtration
			Neutralization
			Drying
			Milling
			Sieving
			Blending
			Packing
Niacinamide	3-picoline	Synthesis	Hydrolysis
macinannue	5-piconie	Synthesis	Filtration
			Thuanon

			1
			Crystallization
			Centrifugation
			Concentration
			Drying
			Sieving
			Packing
D-Calcium pantothenate (B ₅)	Beta-alanine,	Synthesis	Calcification
D Calefulli pantotilenate (D3)	methanol, calcium	5 ynthesis	Decoloration
	oxide		Filtration
	oxide		
			Condensation
			Crystallization
			Centrifugation
			Removal of methanol
			Spray drying
			Sieving
			Blending
			Packing
Pyridoxine (B ₆)	L-alanine, ethanol,	Synthesis	Esterification
	oxalic acid	~ jinneois	Cyclization
			Aromatization
			Hydrolysis
			Decoloration
			Crystallization
			Drying
			Milling
			Blending
			Packing
Folic acid (B ₉)	NP amino benzoyl	Synthesis	Condensation
	glutamic acid, 1,1,3-		Cyclization
	trichloroacetate		Filtration
	litemoroucetute		Acid purification
			Alkali purification
			Filtration
			Spray drying
			Milling
			Sieving
			Blending
			Packing
Vitamin B ₁₂	Culture medium	Fermentation	Raw material dumping
			Disinfection of raw material
			Main fermentation
			Acidification
			Hydrolysis
			Centrifugation
			Acidification
			Ion exchange
			Spray drying
			Blending
			Packing
Choline chloride (vegetable	Trimethylamine,	Synthesis	Neutralization
carrier)	hydrochloric acid		Synthetic reaction
<i>*</i>			Decoloration
			Filtration
			Mix with carrier
			Drying
			Sieving

			Packing
Choline chloride (silica	Trimethylamine,	Synthesis	Neutralization
carrier)	hydrochloric acid		Synthetic reaction
			Decoloration
			Filtration
			Mix with carrier
			Packing
Choline chloride (liquid)	Trimethylamine,	Synthesis	Neutralization
	hydrochloric acid		Synthetic reaction
			Decoloration
			Filtration
			Packing

Appendix 4. Examples of origin, types of carriers, and major heating processes (temperature and duration) of vitamin products manufactured by Zhejiang Medicine Co., Ltd.

Vitamin Product	Carriers and origin	Heating processes (temperature and duration)
Vitamin A	Gelatin – pigskin	Fluidized drying (55°C/140 minutes)
500/650/1000	Corn starch – corn	Crosslinking (90-110°C/15 minutes)
	Glucose – corn	
Vitamin A	Arabic gum – Acacia senegal	Dissolving (65-85°C/> 45 minutes)
(water dispersible)	Glucose syrup – corn	Spray drying (200°C/1 minute)
500,000 IU/g		
Beta-carotene, 10%	Gelatin – pigskin	Dissolving (65-75°C/45-55 minutes)
	Corn starch – corn	Spray drying (120-140°C/60 minutes)
	Sugar – sugar cane	Fluidized drying (80°C/180 minutes)
Canthaxanthin, 10%	Gelatin – pigskin	Dissolving (65-75°C/45-55 minutes)
	Corn starch – corn	Spray drying (120-140°C/60 minutes)
	Sugar – sugar cane	Fluidized drying (80°C/180 minutes)
Vitamin D ₃	Gelatin – pigskin	Emulsification (60-65°C/45 minutes)
	Corn starch – corn	Fluidized drying (60°C/180 minutes)
	Sugar – sugar cane	
Vitamin E, 50%	Silicon dioxide – quartz sand	Mixing granulation (80°C/15-20
	_	minutes)
Vitamin E	Sodium starch octenyl	Dissolving (58-68°C/> 45 minutes)
(water dispersible)	succinate – corn	Spray drying (200°C/1 minute)
50% CWS/FG		
D-biotin, 2%	Maltodextrin – corn	Dissolving (60-65°C/40 minutes)

Company	Vitamin products	Certification
Adisseo	Vitamin A	FAMI-QS
	Vitamin AD ₃	ISO 9001:2015, ISO 14001:2015,
	Vitamin E	OHSAS 18001:2007, FSSC 22000,
	Biotin, 2%	ISO 22000:2005, ISO 2202-1:2009
		(in compliance with EU, CFIA, and
		U.S. FDA)
BASF	Vitamin A	FAMI-QS
	Vitamin AD ₃	ISO 14001:2005, ISO 9001:2015/KS
	Vitamin D ₃	Q, ISO 9001:2015, ISO 50001:2011,
	Vitamin E	22000:2005
	B_2 (riboflavin)	
	Calpan	
	Choline chloride	
DSM	Vitamin manufacturing	FAMI-QS
	Vitamin A	ISO 22000:2005
	Vitamin E	FSMA compliant
	B ₃ (niacinamide)	(HAACP, Preventative control plan,
	B ₆ (pyridoxine HCl)	cGMP, supply chain control, sanitary
	Folic acid	transport, and foreign supplier
	MNB	verification)
	MSBC	HAACP
DSM	Vitamin premix	ISO 9001:2015
	manufacturing	FAMI-QS
		HAACP (in compliance with CFIA
		and U.S. FDA)
		Certified Partners in Protection
		security program (Canada) and
		Customs-Trade Partnership Against
		Terrorism program (U.S.)
Lonza Guangzhou Nasha, Ltd.	Niacinamide	ISO 22000:2005, ISO/TS
Guangzhou, China		22002:2009, additional FSSC 22000
-		requirements
Xinfa Pharmaceutical Co., Ltd.	Vitamin D ₃ beadlets	ISO 22000:2005, ISO/TS
Shandong, China	D-calcium pantothenate	22002:2009, additional FSSC 22000
	D-panthenol	requirements
	B_1 thiamin HCl	
	Folic acid	
	B ₂ (riboflavin)	
	B ₆ (pyridoxine HCl)	
Zhejiang Medicine Co., Ltd.	Vitamin A acetate acid ester	FAMI-QS
	Vitamin A acetate beadlets	GMP+FSA
	Vitamin D ₃ beadlets	HAACP
	Vitamin AD ₃ beadlets	
	Vitamin E powder	
	D-biotin	

Appendix 5. Examples of vitamin and premix manufacturing certifications of major vitamin manufacturers

Company	Products audited	
Anhui Redpont Biotechnology Co., Ltd	Nicotinamide	
Brother - Haining	Vitamin K ₃	
Changzhou Xinhong - Jiangsu	Folic acid	
CSPC HeBei Huarong Pharmaceutical Co., Ltd.	Vitamin B ₁₂	
CSPS Pharmaceutical Group., Ltd WeiSheng	Vitamin C 35%	
Fuyang Kexing Biochem Co., Ltd.	Biotin	
Zhejiang Garden Biochemical High-Tech Co., Ltd.	Vitamin D ₃	
Hubei Guangji Pharmaceutical Co., Ltd.	Vitamin B ₂	
Hebei Be-Long Corporation	Choline chloride	
Hebei Ruixin Biotechnology Co., Ltd	Vitamin B ₁₂	
Hebei Tianyin Biotech Co., Ltd	Vitamin C	
Taizhou Hisound Chemical Co., Ltd.	Vitamin D ₃	
Huazhong Pharmaceutical Co., Ltd.	Vitamins B ₁ and B ₆	
Jiangsu Brother Vitamin Co., Ltd.	Vitamin B ₁	
Jiangxi Tianxin Pharmaceutical Co.	Vitamin B ₁ , B ₆ , and folic acid	
Jilin Beisha Pharmaceutical Co. Ltd, - Jilin	Vitamin E and folic acid	
Liaoning Biochem Co., Ltd.	Choline chloride	
Nantong Changhai- Jiangsu	Folic acid	
NCPC Hebei Lexin Pharmaceutical Co. Ltd	Vitamin B ₁₂	
Nenter & Co.,Inc	Vitamin E	
Zhejiang NHU Company, Ltd.	Vitamins A, E, D ₃ , biotin, pigments	
Shandong Aocter Chemical	Choline chloride	
Shandong JuJia Biotech Co., Ltd	Choline chloride	
Shandong Kunda Biotechnology Co., Ltd	Niacinamide/potassium sorbate	
Shandong NB Technology Co., Ltd	Choline chloride	
Shandong Tianli Pharmaceutical Co., Ltd., Vitamin Branch Company	Vitamin C	
Xinfa Pharmaceutical Co., Ltd.	Folic acid, D-Calcium pantothenate, Vitamin B_1 and B_6	
Hangzhou Xinfu Science & Technology Co., Ltd.	Vitamin B ₅	
Zhejiang Lanbo Biotechnology Co., Ltd.	Niacinamide	
Zhejiang Medicine Co., Ltd.	Vitamin A, D ₃ , E, biotin/VE 50%, biotin	

Appendix 6. Examples of vitamin manufacturers and products from China that have completed additional biosecurity audits