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A B S T R A C T

Investments in biosecurity practices are made by producers to reduce the likelihood of introducing pathogens
such as porcine reproductive and respiratory syndrome virus (PRRSv). The assessment of biosecurity practices in
breeding herds is usually done through surveys. The objective of this study was to evaluate the use of machine-
learning (ML) algorithms to identify key biosecurity practices and factors associated with breeding herds self-
reporting (yes or no) a PRRS outbreak in the past 5 years. In addition, we explored the use of the positive
predictive value (PPV) of these models as an indicator of risk for PRRSv introduction by comparing PPV and the
frequency of PRRS outbreaks reported by the herds in the last 5 years. Data from a case control study that
assessed biosecurity practices and factors using a survey in 84 breeding herds in U.S. from 14 production systems
were used. Two methods were developed, method A identified 20 variables and accurately classified farms that
had reported a PRRS outbreak in the previous 5 years 76% of the time. Method B identified six variables which 5
of these had already been selected by model A, although model B outperformed the former model with an
accuracy of 80%. Selected variables were related to the frequency of risk events in the farm, swine density
around the farm, farm characteristics, and operational connections to other farms. The PPVs for methods A and B
were highly correlated to the frequency of PRRSv outbreaks reported by the farms in the last 5 years (Pearson
r=0.71 and 0.77, respectively). Our proposed methodology has the potential to facilitate producer’s and ve-
terinarian’s decisions while enhancing biosecurity, benchmarking key biosecurity practices and factors, identi-
fying sites at relatively higher risk of PRRSv introduction to better manage the risk of pathogen introduction.

1. Introduction

Biosecurity is the combination of all practices taken to reduce the
risk of introduction and spread of pathogens (Amass and Clark, 1999;
Food and Agriculture Organization, 2010). In other words, biosecurity
practices intend to keep diseases out of the farm as well as to manage
further spread of endemic diseases in the farm. The adoption of these
practices is essential to prevent introduction of infectious diseases such
as porcine reproductive and respiratory syndrome virus (PRRSv) in a
herd. Despite the years of research since it was first reported (Keffaber,
1989), PRRSv continues to cause productivity losses worth $664 mil-
lion annually and is considered a major health problem affecting the
global swine industry (Holtkamp et al., 2013; Pileri and Mateu, 2016).

The evaluation of biosecurity is usually done by the assessment of
highly correlated practices (Boklund et al., 2004). PRRS-specific

biosecurity assessments take into account the most likely risk events for
transmission of PRRSv between farms (e.g. animal movements, pickup
and deliveries of supplies from or to farms, people movement, contact
with other animals, air and water) (Otake et al., 2002a; Perez et al.,
2015; Zimmerman et al., 2012) and are useful for understanding how
PRRSv may be introduced into a herd (Holtkamp and Linhares, 2017;
Silva et al., 2018).

Supervised machine-learning (ML) algorithms are broadly used in
human and animal health, as they can handle both classification and
regression operations. Outcome predictions are based on the consensus
of hundreds of randomized decision trees built using a large number of
explanatory variables (Breiman, 2001; Machado et al., 2019, 2015).
Compared with other “conventional” methods (e.g. logistic regression
models) (Tuerlinckx et al., 2006), ML algorithms have shown better
performance (Fountain-Jones et al., 2019; Machado et al., 2019, 2015).
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Generalized linear models are not as effective as in capturing such non-
linear responses and complex interactions, which is an important ad-
vantage of most machine-learning algorithms in capturing these non-
linear responses and complex interactions (Elith et al., 2008; Tu, 1996).

Biosecurity survey data are often complex, correlated and extensive.
Thus, the characteristics of ML make it an attractive approach to
identify vulnerabilities in biosecurity practices and factors associated
with risk of PRRSv introduction. Identifying and ranking the most re-
levant biosecurity practices and factors associated with PRRSv out-
breaks will generate new knowledge about the impact of biosecurity on
PRRSv transmission and allows for benchmarking of key biosecurity
practices and factors within and between swine production systems
over time.

The objective of this study was to evaluate the use of a set of ML
algorithms to identify key biosecurity practices and factors associated
with reported PRRS outbreaks in swine breeding herds. In addition, the
plausibility of using the positive predictive value (PPV) of these models
as an indicator of risk for PRRSv introduction was explored by assessing
the association between the PPV and the frequency of PRRSv outbreaks
reported by the herds in the last 5 years.

2. Material and methods

For the purpose of this study, “biosecurity practices and factors”
refer to all practices taken to prevent or reduce the likelihood of PRRSv
introduction into a swine breeding herd. Risk events were defined as
events which may result in PRRSv introduction and they are described
by category in Table 1. The risk events were established based on the
common events that occur on swine breeding herds and data from the
literature. In addition, biosecurity factors include herd characteristics
and swine density nearby the farm that is not classified as a biosecurity
practice per se.

2.1. Study design and data collection

The data used in this study originated from a case-control study
designed to describe biosecurity practices in breeding herds with his-
tory of low incidence of PRRS outbreaks compared to those with high
incidence (Silva et al., 2018).

The target population of the study were the breeding herds that
were part of MorrisonSwine Health Monitoring Project (MSHMP).
MSHMP is a swine disease monitoring program where U.S. swine

producers share weekly disease status and represents a convenience
sample of 930 sow herds from 25 production systems including ap-
proximately 2.7 million sows (Perez et al., 2019). Swine production
system was defined as the set of farms owned, managed or both by the
same company.

The source population of this study was herds reporting to MSHMP
and the study sample was a convenient sample of 84 breeding herds
from 14 swine production systems which agreed to share historical
information of PRRS outbreaks and complete a biosecurity survey. The
data were collected during the summer of 2017 by one of the authors
(KLB) using an electronic file (Microsoft Excel) and personal interview
when needed. The definition used to report a PRRSv outbreak was the
identification of a PRRS wild type virus in the breeding herd and was
self-reported by the production system.

The outcome of interest in this study was the presence (case) or
absence (control) of at least one PRRSv outbreak in a period of five
years self-reported by the farms. From the 84 breeding herds, 50 farms
were classified as cases and 34 farms as controls respectively.

2.2. Biosecurity survey

The survey used to capture biosecurity practices and factors was
developed through the PRRSv Outbreak Investigation Program (Canon
et al., 2015) at Iowa State University, and collected information on herd
characteristics, swine density, PRRS outbreak history (number of
PRRSv outbreaks), frequency of risk events and bioexclusion practices
associated with each risk event. The survey is described in Table A in
Supplement File.

2.3. Machine learning algorithms

Supervised machine-learning (ML) algorithms: Random Forest (RF)
(Breiman, 2001), Support Vector Machine (SVM) (Boser et al., 1992),
and Gradient Boosting Machine (GBM) (Friedman, 2001) were used to
explore the association between PRRS outbreaks and biosecurity prac-
tices and factors. In the context of this study, algorithms’ capacities to
classify outcomes are dependent on complexity, volume and internal
structure of the data. Thus, we compared and selected the best algo-
rithm based on higher i) accuracy, ii) sensitivity, and iii) specificity in
classifying farms that had reported PRRS outbreak (Fig. 1).

First, the data were modeled with their natural imbalance nature
(different proportion of case:control). Then, a down-sampling strategy

Table 1
Risk events that may result in PRRSv introduction into a breeding herd.

Categories of risk events Risk events

Swine movements I. Semen delivered to premises
II. Breeding replacement animals delivered to premises
III. Cull breeding animals hauled from premises
IV. Weaned pigs hauled from premises

Pickup/Deliveries I. Dead animals removed from premises
II. Feed or feed ingredients delivered to premises
III. Propane and fuel delivered to premises
IV. Garbage collected from premises
VI. Electrical meter read on premises
VII. New tools and supplies are delivered to premises
VIII. Tools and supplies transferred from other swine premises are delivered to premises

People movement I. On-farm employees enter premises
II. Repair, maintenance, electrical and plumbing personnel enter premises
III. Veterinarians, off-site production managers, vendors and other visitors enter premises

Pork/food product entry
Manure removal
Wild animals, domestic animals and insects I. Wild animals

II. Domestic animals
III. Insects

Air and water I. Entry of air
II. Entry of water
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via “downSample” function in the R package caret (Max Kuhn
Contributions from Jed Wing et al., 2018) was performed and compared
with the imbalanced data given the strong likelihood that classifications
trending towards the majority class (cases) would affect model perfor-
mance (Haixiang et al., 2017). For the down-sampling strategy, the
majority class was randomly down-sampled to match the frequency of
the rarest class. Prior to down-sampling, the original data were ran-
domly and uniformly divided into a training (80%) and an independent
test set (20%).

The training set was used to train the ML algorithms via a k-fold
cross-validation process and the independent test set was used for va-
lidation. All algorithms (RF, SVM and GBM) were trained (80% of data)
using 260 variables related to biosecurity practices and factors. RF was
performed with randomForest package (Liaw and Wiener, 2002), and
SVM and GBM were performed with the caret package (Max Kuhn
Contributions from Jed Wing et al., 2018). In the training steps, an
internal repeated 10-fold cross-validation process to estimate model
performance was implemented to prevent overfitting and artificial in-
flation of accuracy because training and testing data come from the
same cross-sectional study. Fig. 1 describes the steps in our ML

framework.
Model performance for each ML algorithm was assessed by calcu-

lating the training accuracy, specificity, and sensitivity based on the
construction of a confusion matrix (Fig. 1) (Machado et al., 2019,
2015). The 20% of data set aside from the original dataset was used as
an independent test set of observations. The independent test set of
observations was fed into the selected ML algorithm, allowing the al-
gorithm to predict the outcome for the new data. Accuracy was calcu-
lated as the overall proportion of observations correctly predicted.
Specificity was calculated by dividing TN (true negative) by the sum of
TN and FP (false positive). Sensitivity was calculated as TP (true posi-
tive) divided by the sum of TP and FN (false negative) for each ML
algorithm. The threshold used to classify a farm as a case was a prob-
ability ≥50% (0.50).

2.4. Variable selection and ranking

To rank the importance of each variable the unscaled node impurity
measured by the Gini index was calculated. Regardless of the algorithm,
the variable importance score represents the relevance of each

Fig. 1. Flow chart showing the steps in our machine-learning framework.
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biosecurity practice and factor in predicting PRRSv outbreaks, with
larger values representing more relevant predictors.

To reduce the number of predictors used, two approaches named
method A and method B were generated. Method A used three para-
meters to variable selection: 1) Accuracy, calculated the accuracy when
variables are permuted. 2) P-value calculated for each variable to
evaluate whether it was used in the random forest more often than
when variables were included in decision trees at random. P-values
were based on a binomial distribution of the number of nodes split on
the variable assuming that variables are randomly drawn (Ishwaran
et al., 2010). 3) Node purity, where the mean decrease in the Gini index
of node impurity (i.e. increase of node purity) by splits is calculated.
Finally, only variables with a p-value≤ 0.01, an increase of node
purity > 0.04 points and with an increase in accuracy of ≥0.1, were
considered.

Method B consisted of a Boruta algorithm (Kursa and Rudnicki,
2010), a more direct method to determine variable relevance by com-
paring the relative relevance of the real variables with that of random
probes. The Boruta routine has been found to be the one of the most
powerful approaches to select relevant features (Degenhardt, Seifert, &
Szymczak, 2017) and does so by measuring the importance of each
variable also using a tree-like algorithm (Kursa and Rudnicki, 2010).
Boruta is an all relevant variable selection method, while most other
approached are minimal optimal; this means it tries to find all variables
carrying information usable for prediction, rather than finding a pos-
sibly compact subset of variables on which some classifier has a
minimal error (Kursa and Rudnicki, 2010). Boruta was applied using
function “Boruta” from the boruta package (Kursa and Rudnicki, 2010).

The influence of the most relevant variables was further analyzed
via partial dependence plots. These provide insight on the marginal
effect of each predictor on the likelihood of a PRRS outbreak while
controlling for the effects of all other variables. The partial dependence
of a variable’s effect is best understood by visually examining general
patterns in relation to the values of the predictor variable (Friedman,
2001). Because we modeled a binary classification, case or control,
partial dependence values were reported on the “logit” scale (Cutler
et al., 2007), where larger values indicate higher probability of being a
case herd (Fig. 1).

2.5. Positive predictive value as a risk index

The positive predictive value (PPV) is the probability that a farm
that was predicted to be a case, had reported at least one PRRS outbreak
(McKenna and Dohoo, 2006) and estimated using methods A and B.

To evaluate if the PPV obtained by methods A and B could be used
as a risk index to identify farms at higher risk based on the combination
of key biosecurity practices and factors. The PPV for each farm (n= 84)
was estimated, then the association between the PPV and the frequency
of PRRS outbreaks (number of outbreaks) reported by each farm was
assessed using the Pearson correlation coefficient. The correlation
coefficient was estimated using the package stats (R Foundation for

Statistical Computing, Vienna, 2011).

3. Results

3.1. Descriptive analysis

A total of 84 breeding herds from 14 production systems were in-
vestigated. Thirty-four (n= 34) herds did not report a PRRS outbreak
in the previous 5 years, and 50 herds reported at least one PRRS out-
break. Negative farms had median herd size of 3,100 sows (range:
1,563.8–5,215.0), while positive farms 3,811 sows (range:
2,680.3–5,350.3).

3.2. Model selection and validation

The best-performing algorithm was selected by comparing model
performance in the cross-validation step and ranking algorithms, RF
without down-sample had the best performance with an accuracy of
76.4% (± 2.49), SVM with 69.11% (±2.05), and GBM 70.14%
(±5.32). Sensitivity were 86.2% (± 3.45) for RF, 72.97% (± 8.91)
for SVM, and 79% (± 5.42) GBM. Specificities were 62.5% (± 3.87)
for RF, 68% (± 4.77) for SVM, and 57.50% (±3.12) for GBM.
Random forest was the best algorithm, consequently, was the ML al-
gorithm used for all-further analysis. Table 2 describes the cross-vali-
dated confusion matrix for RF algorithm (Table 2). Thus, using the RF
algorithm and applying the rules described in the method section for
method A, 20 variables were selected based on accuracy improvement
and the node purity. The calculated p-value for each variable’s influ-
ence on PRRSv outbreak, according to accuracy and increase of node
purity, is shown in Fig. 2.

Method B used six preselected variables for the final model, again
RF algorithm performed best with an accuracy: 80%; sensitivity: 86%;
specificity: 72%. Table 2 describes the cross-validated confusion matrix.

Analysis of the correlation matrix computed for variables selected in
method A (Supplement Fig. A) suggested that a small number of vari-
ables, especially those related to the frequency of events were highly
correlated. Correlation between variables used in method B was not
significant (Supplement Fig. B).

3.3. Variable importance

The twenty variables were ranked according to their contribution to
model prediction by the unscaled average decrease in node impurity
(Fig. 3). Employees food entry, frequency of weans per month, fre-
quency of rendering, number of employees at farm, annual employee
turnover and frequency of cull sows hauled per month were the six most
important variables for PRRSv classification for method A.

The variable importance matrix for method B is depicted in Fig. 4
(top). Ranked in order of importance is frequency of weans per month
followed by number of finishing pigs within 3 miles radius. Subsequent
rankings are as follows: PRRSv positive animals hauled on a trailer that

Table 2
Classification performance using method A (p-value and Gini index) with the confusion matrix for the RF model trained with the complete set of predictor variables
(n=19), and Classification performance using method B (BORUTA) with the confusion matrix for the RF model trained with the complete set of predictor variables
(n=6).) both used average of ten repetitions of 10-fold cross-validation. Standard deviations are given in parenthesis*.

P-value and Gini index* . Observed

. . Not reporting PRRS outbreak Reporting PRRS outbreak

Method A-predicted Not reporting PRRS outbreak 17.5 (1.08) 5.5 (1.64)
Reporting PRRS outbreak 10.5 (1.08) 34.5 (1.64)

Method B -predicted Not reporting PRRS outbreak 20.2 (0.63) 5.6 (1.42)
Reporting PRRS outbreak 7.8 (0.63) 34.4 (1.42)

* Performance metrics method A: ACC: 76.47 (Sd. 2.49); SPE: 62.50 (Sd. 3.87) and SEN: 86.25 (Sd. 3.45) and method B ACC: 80.29 (Sd. 1.72); SPE: 72.14 (Sd.
2.25) and SEN: 86.00 (Sd. 3.57).
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also hauls culled sows, type of dead disposal onsite, frequency of
monthly dead animal removal and being a commercial herd.

For both variable selection methods, A and B, the key variables that
were able to correctly classify the farms based on PRRS outbreak re-
ports were related to: farm characteristics and requirements, monthly
frequency of risk events, animal density around the farm and opera-
tional connections to other farms. A descriptive analysis by group for
the variables identified in methods A and B can be found in Table B in
the supplementary file.

3.4. Partial dependence plots

The effect of each variable on the probability of a PRRS outbreak are
shown in partial dependence plots. Due to the larger number of vari-
ables retained by method A (n=20), the full partial plots are described
in Fig. C in Supplement File and for method B, the partial plots are
described in Fig. 4 (bottom).

In summary, the probability of a herd being classified as having
reported a PRRSv outbreak increased as frequency of risk events (e.g.
frequency of rendering per month) and the swine density surrounding
the farm (e.g. number of swine sites or pigs within 3 miles) increased
(see Figs. 4 and C in Supplement File). Likewise, the risk of reporting a
PRRSv outbreak increased when the farm did not have an onsite dis-
posal method for dead animals, or when the farm shared trailers with
other farms to transport breeding replacement animals or culled sows
(see Figs. 4 and C in Supplement File). However, the risk of reporting a
PRRS outbreak decreased with the increase in the frequency of weaning
pigs per month, with the number of employees working daily in the
farm, and with the increase in the downtime period requirement for
visitors (see Fig. C in Supplement File).

3.5. PPV as risk index of PRRSv outbreak

The PPV reflects the herd's likelihood of being classified as reporting
a PRRS outbreak. The PPV for methods A and B showed to be strongly
correlated with the frequency of PRRS outbreak. Comparing both
methods, PPV from method B had higher association, Pearson correla-
tion coefficient of 0.77 (p-value < 0.01), compared to method A
(Pearson r= 0.71, p-value < 0.01). Fig. 5 describes the relationship
between the PPV and number of outbreaks for each farm. The results
suggested that higher the PPV higher the number of outbreaks reported
by the farm.

4. Discussion

In this study, we proposed two variable selection strategies (A and
B). A large number of predictors were evaluated with the objective of
identifying key biosecurity practices and factors able to correctly clas-
sify farms that had PRRSv outbreak. In comparing the performance of
methods A and B with the full model that used all 260 variables (ac-
curacy of 65.0%), both methods outperformed the full model using
fewer variables. Method A had an accuracy of 76.3% using 20 variables,
and method B was even better with an accuracy of 80% using only 6
variables. In addition, both models had better sensitivity than the full
model. The performance of ML methods, as with other statistical
methods, can be influenced by imbalanced proportions of the outcome
of interest, this is widely overlooked particularly in veterinary epide-
miology (Haibo He and Garcia, 2009; Liaw and Wiener, 2002; Machado
et al., 2019). To address this issue, we used a down-sampling strategy
and compared the results with those from the model where the im-
balance was ignored. The results suggested that the imbalance did not

Fig. 2. Method A: Variables selection. Variable
importance according to the Gini index and the
accuracy metric. Variables in red represent
ones that were more often used to split the
nodes in the random forest. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article).

Fig. 3. Variable importance analysis performed by random forest using method A (p-value model and Gini index). The set of 20 variables used for classification are
ordered by their importance as estimated by the RF model.
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impact on model performance (results not shown).
The ranking of the final variables (in descending order of im-

portance) (Fig. 3 and 4) suggests that the main variables involved in
PRRS classification may be grouped into four categories: frequency of
risk events in the farm, swine density around the farm, farm char-
acteristics, and restrictions on visitors/operational connections to other
sites. The identified association between variables and PRRSv outbreak
has been previously reported elsewhere (Desrosiers, 2011; Pileri and
Mateu, 2016)

Among the variables identified in this study, the frequency of risk
events was the most relevant. The frequency of food entry was the most
important factor and was highly correlated with the number of em-
ployees. Other events that increased the risk were the frequency of
rendering, frequency of garbage collection, frequency of feed delivery,
frequency of repairs and frequency of cull sows removal. Previous re-
search has indicated that trucks, trailers, animals products, feed,

fomites, contaminated equipment and personnel have the potential to
increase PRRSv spread (Dee et al., 2004; Dewey et al., 2014; Magar and
Larochelle, 2004; Otake et al., 2002b; Pitkin et al., 2009). Even though
some of these events may not represent high risk, the probability of
pathogen introduction increases as the frequency of risk events in-
creases (Romagosa, 2017).

On the other hand, the risk was lower in farms with a high fre-
quency of employee entry. This finding was also previously reported in
other studies (Boklund et al., 2004; Postma et al., 2015; Ribbens et al.,
2008; Van Steenwinkel et al., 2011), with a possible explanation being
that farms with high number of employees tend to have greater con-
cerns about biosecurity training and compliance. In addition, herds
with a higher frequency of weaning pigs per month had a lower risk of
having the disease and the same hypothesis can be speculated here.

From the 22 variables selected by both methods, four were related
to herd size and swine density around the farm. Our results suggest that

Fig. 4. Random forest variable importance and partial dependence plots using method B (BORUTA-features reduction). Upper - Biosecurity aspects in order of
importance. Bottom - Partial dependence plot indicating marginal effect for PRSS prediction.
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the chances of a farm being classified as reporting PRRSv outbreak
increases linearly with an increase in herd size and swine density
around the farm (Figs. 4 and C Supplement File). We believe that higher
the herd size, more likely to have operational connections to other sites,
which may increase the likelihood of reporting a PRRSv outbreak.

The indirect transmission of PRRSv via air is well known (Dee et al.,
2009; Mortensen et al., 2002; Velasova et al., 2012). Given the im-
portance of airborne transmission, the swine industry has adopted fil-
tration of air in breeding herds which has been shown to reduce the
number of PRRSv outbreaks (Alonso et al., 2013). Despite this trend,
the use of air filtration was not ranked among the top predictors in our
study and this may be due to the small percentage of farms that re-
ported air filtration between groups (11 farms in case and 11 farms in
control group).

Farms that had offsite dead disposal were also associated with
higher risk. Velasova et al. (2012) described that farms that had dead
pigs collected had higher odds (OR=5.6, 95%CI: 1.7–18.3)1.7–18.3)
of active PRRS infection compared to farms that had onsite dead dis-
posal. Onsite disposal eliminates the need for rendering trucks, a po-
tential risk event, since they visit multiple sites and carry potentially
contaminated carcasses. In addition, our results suggested that the
greater the distance of the farms from public roads the lower the risk
(Fig. C Supplement File). Farms close to public roads may be more
susceptible to airborne transmission/infection because these are used to
transporting animals from different sources and health status.

The findings related to requirements for visitors and operational
connections between sites showed that herds which share trailers were
more likely to be classified as reporting PRRSv outbreak, reinforcing the
importance of transport biosecurity practices. Previous studies have
demonstrated that pigs may be infected with PRRSv through contact
with contaminated vehicles and that a contaminated trailer can serve as
a link between different sites and act as a source of infection (Bottoms
et al., 2012; Dee et al., 2004; Pitkin et al., 2009). Our results showed
that the risk of reporting a PRRS outbreak increases in herds in which
PRRSv-positive pigs share the trailer with culled sows. In addition,
there was a linear relationship between the number of sites that shared
the same gilt replacement trailer and the probability of reporting PRRS
outbreak. Monthly pig movements among herds not only facilitate
PRRSv spread but also regularly introduce groups of susceptible

animals (nursery pigs and gilts). Given the connectivity of the swine
industry and the need to share supplies, effective protocols to clean and
disinfect are necessary to reduce the risk of disease transmission by
transport (Dee and Deen, 2006). Another well-established biosecurity
practice identified as risk factor was the downtime required for visitors
(Amass and Clark, 1999; Pitkin et al., 2011). Our findings also suggest
that the longer the downtime, the lower the risk.

We identified that PPV would be a good candidate to serve as an
index to evaluate the risk of PRRSv outbreak. Here, the PPV represents
the combination of the selected biosecurity practices and factors and
the higher the PPV, the greater the frequency of PRRSv outbreaks in the
past 5 years. In this study, we identified that such an approach has the
potential to become an important tool to be directly used by producers
and field veterinarians. Importantly, our approach uses a small number
of questions in order to avoid collecting excessive information. This
may increase the success rate of obtaining biosecurity information from
producers with the goal of benchmarking biosecurity practices and
factors over time (Boynton and Greenhalgh, 2004; Dean, 2015).

Importantly, benchmarking key biosecurity practices and factors
would facilitate the identification of common differences between
farms that have had outbreaks and would similarly identify common
practices and factors of those farms that keep themselves free of PRRSv
over time. Moreover, production systems may use this tool to identify
herds at higher risk of PRRSv introduction in order to prioritize their
investments.

One point that must be emphasized is that benchmarking a smaller
set of variables does not negate the importance and the need of the
other biosecurity practices. Due to the lack of variability, some prac-
tices were classified as unimportant and were judged by the model as
not contributing to the correct classification of the farms. This can be
explained by the fact that most of the farms usually apply a large
number of biosecurity practices, leaving no variability within farms.
Because of that, the variables selected can be seen as a proxy of the
biosecurity practices related to each event. This suggests that producers
should paid attention to these events, given that their frequency of
occurrence was associated with the occurrence of PRRSv outbreaks.

The limitations of this study include the possibility of information
bias with the use of survey and interviews, even if conducted directly
with the producers (Dean, 2015). The use of convenience sampling

Fig. 5. Scatter plot describing the relationship
between the PPV and the number of outbreaks
reported for each farm. Note that some farms
reported more than one outbreak during
2012–2016 and this number was used to assess
this relationship. Black dots represent the
farms that had not had reported an outbreak
(negative farms) and orange dots represent the
farms that reported a PRRSv outbreak. A – PPV
obtained using method A (p-value and Gini
index) and B - PPV obtained using method B
(Boruta).
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restricts the scope of the study and the extrapolation of the results
should be done with caution. Another limiting factor of the study was
the sample size. The relatively small number of observations and the
low variability of some variables may have affected variable selection
expected to be relevant. Lastly, the use of a data-driven model did not
account for biological plausibility between the outcome and the in-
dependent variables; this only identified the variables most important
for the classification and may be subject to finding spurious associa-
tions. However, because our interest was to identify and reduce the
number of predictors, we believe that we have achieved the goal pro-
posed by the study.

5. Conclusion

The results support the concept that there is correlation in biose-
curity practices and factors of swine breeding herds. Our findings in-
dicate that it is possible to identify the most relevant biosecurity
practices and factors by ‘asking’ fewer questions, and them to predict
PRRSv risk of outbreak. Methods A and B have classified farms’ PRRS
status as positive when diseases occurred with an accuracy of accuracy
of 76% and 80%, respectively. With this study we developed the initial
concept for a future tool with the capacity to help producers and ve-
terinarians to measure and benchmark key biosecurity practices and
factors more frequently, identify sites at relatively higher risk of PRRSv
introduction to better manage the risk of virus introduction over time.
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