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A B S T R A C T   

Summary: Several propagation routes drive animal disease dissemination, and among these routes, contaminated 
vehicles traveling between farms have been associated with indirect disease transmission. In this study, we used 
near-real-time vehicle movement data and vehicle cleaning efficacy to reconstruct the between-farm dissemi
nation of the African swine fever virus (ASFV). We collected one year of Global Positioning System data of 823 
vehicles transporting feed, pigs, and people to 6363 swine production farms in two regions in the U.S. Without 
cleaning, vehicles connected up to 2157 farms in region one and 437 farms in region two. Individually, in region 
one vehicles transporting feed connected 2151 farms, pigs to farms 2089 farms, pigs to market 1507 farms, 
undefined vehicles 1760 farm, and personnel three farms. The simulation results indicated that the contact 
networks were reduced the most for crew transport vehicles with a 66% reduction, followed by vehicles carrying 
pigs to market and farms, with reductions of 43% and 26%, respectively, when 100% cleaning efficacy was 
achieved. The results of this study showed that even when vehicle cleaning and disinfection are 100% effective, 
vehicles are still connected to numerous farms. This emphasizes the importance of better understanding trans
mission risks posed by vehicles to the swine industry and regulatory agencies.   

1. Introduction 

Similar to the movement of live animals known to dominate 
between-farm pathogen dissemination (Galvis et al., 2022a; Green et al., 
2006), transportation of vehicle movements is of great concern as an 
indirect dissemination route (Galvis et al., 2022a, 2022b; Smith et al., 
2013; Thakur et al., 2016). Recent studies investigated the role of ve
hicles as the pathway of porcine epidemic diarrhea virus (PEDV) out
breaks (Boniotti et al., 2018; Garrido-Mantilla et al., 2022; Lowe et al., 
2014); African swine fever (ASF) (Adedeji et al., 2022; Cheng and Ward, 
2022; Li et al., 2020; Nigsch et al., 2013; Yoo et al., 2021b); and avian 
influenza virus (Huneau-Salaün et al., 2020; Yoo et al., 2021a). In 
addition, (Boniotti et al., 2018; Dee et al., 2004; Gebhardt et al., 2022; 
Greiner, 2016; Mannion et al., 2008) demonstrated that infectious 
pathogens are found on vehicle surfaces, while others estimated the 
contribution of vehicles in PEDV and porcine reproductive and respi
ratory syndrome virus (PRRSV) (Dee et al., 2002; Galvis et al., 2022a; 
Thakur et al., 2017; VanderWaal et al., 2018). That said, the underlying 
mechanisms of vehicles as disease dissemination routes remain to be 

examined in large-scale studies (Galvis et al., 2022a; Neumann et al., 
2021). Thus, without access to actual vehicle movement data along with 
pathogen stability in vehicle environments at field conditions; and the 
effects of vehicle cleaning and disinfection in reducing vehicle 
contamination, are still challenges highlighted in better understanding 
the indirect contribution of vehicles in disease dissemination (Bernini 
et al., 2019; Galvis et al., 2022a; Gao et al., 2023b; Neumann et al., 
2021). 

The complexity and the dynamics of animal and vehicle between 
farm movement networks present a formidable challenge for decision- 
makers and producers who need to implement disease control mea
sures, often not knowing when a new load of animals will arrive and if 
the farm or origin has been recently infected or not, or if a feed truck is 
delivering feed after being at an infected farm (Galvis et al., 2022a, 
2022b; Lee et al., 2019; Yoo et al., 2021b). Some studies in North 
America and Europe utilized actual animal and vehicle movement data 
to reconstruct the between-farm transmission dynamics of infectious 
diseases (Andraud et al., 2022; Bernini et al., 2019; Galvis et al., 2022a, 
2022b) while considering pathogen stability at the environment and the 
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effects of cleaning and disinfection. Even though previous studies 
enhanced our understanding of indirect swine disease dissemination 
through vehicle movements, authors identified uncertainties about the 
association between i) the efficacy of vehicle cleaning and disinfection 
and ii) factors affecting pathogen stability over their contribution in 
disseminating disease from farm-to-farm (Andraud et al., 2022; Bernini 
et al., 2019; Galvis et al., 2022a, 2022b). Vehicle cleaning and disin
fection may not effectively eliminate infectious pathogens, especially in 
difficult access areas, such as behind windows or gates (Boniotti et al., 
2018; Li et al., 2020; Mannion et al., 2008). Therefore, it is essential to 
consider that several factors modulate the impact of vehicle cleaning 
and disinfection effectiveness, including using different disinfectants 
associated or not with heat, which is directly associated with the time 
needed for a complete truck wash (De Lorenzi et al., 2020; Porphyre 
et al., 2020). Similarly, the better pathogen that survives in the envi
ronment is more likely to be disseminated among farms by vehicles 
(Jacobs et al., 2010; Mazur-Panasiuk and Woźniakowski, 2020). Tem
perature, pH, humidity, and ultraviolet (UV) radiation are associated 
with pathogen stability (Carlson et al., 2020; Cutler et al., 2012; Espi
nosa et al., 2020; Hijnen et al., 2006). For example, the high temperature 
reduces ASF, PRRSV, PEDV, and foot-and-mouth disease stability 
outside the host over time (Bøtner and Belsham, 2012; Jacobs et al., 
2010; Kim et al., 2018; Mazur-Panasiuk and Woźniakowski, 2020). 

The scarcity of vehicle movement data and the lack of network 
methods capable of combining contact networks, variables associated 
with pathogens’ stability, and uncertainty of cleaning and disinfection 
limit our ability to understand the contribution of vehicles in disease 
transmission. Here, we collected GPS data of 567 vehicles transporting 
feed, pigs, and people to 6363 farms. We developed a novel vehicle 
contact network method that considers environmental variables and 
vehicle cleaning and disinfection effectiveness. Thus, our goal was to 
reconstruct a vehicle contact network of swine companies in the U.S. 
while using ASFV pathogen stability profile. 

2. Materials and methods 

2.1. Database 

In this study, we used information from two U.S. regions. Region one 
with 1974 commercial swine farms managed by six swine production 
companies (coded hereafter A, B, C, D, E, and F), and region two with 
4389 commercial swine farms managed by 13 swine companies (coded 
here as G, H, I, J, K, L, M, N, O, P, Q, R, and S). Farm data includes a 
unique premise identification, animal capacity stratified by age, lati
tude, and longitude representing the farm’s centroid and associated 
management company. In addition, enhanced on-farm Secure Pork 
Supply (SPS) biosecurity plans (Center for Food Security and Public 
Health, 2017) were used to identify the exact farm geolocations and 
were available for 95.8% and 29.5% of farms located in regions one and 
two, respectively (subsection 2.2). Furthermore, farms were classified 
into 24 types based on the swine production phase or how each pro
duction company classified them. Briefly, in North American swine 
production, a site may have more than one production phase (i.e. 
farrow-to-finisher). Thus, farms are categorized based on the farm ca
pacity of each production phase present per site. Swine companies 
usually have their farm classification but present inconsistencies by 
multiple formats among the companies. Because of this inconsistency, 
we simplified farm-type classification. For example, a farm with 
breeding-age animals was classified as a sow farm, while a farm that 
reported space for breeding animals and finishers was considered a 
sow-finisher farm (Supplementary Material Table S1 for the complete 
list of farm types). In regions one and two, 16% and 20% of farms, 
respectively, lacked pig capacity information for each production phase. 
For those farms as an alternative, we used farm types provided by 
participating companies (Supplementary Material Table S1). 

Data on the vehicles used by companies A, B, and G for 2020 (from 

January 01 to December 31) was collected. A total of five types of ve
hicles were included in the study. Company A operated with 654 vehi
cles which included: (i) 230 trucks delivering feed to farms, named 
hereafter “feed-vehicle”; (ii) 169 vehicles utilized in the transportation 
of live pigs between farms, named hereafter “pig-farm-vehicle;” (iii) 127 
vehicles used in the transportation of pigs to markets (a.k.a. slaughter
house, packing plants) named hereafter “pig-market-vehicle”; (iv) 44 
vehicles used in the transportation of crew members named hereafter 
“crew-vehicle,” which correspond to the movement of personnel per
forming a wide range of farm tasks: vaccination, power washing at 
closeouts, pig loading, and unloading; and (v) 84 vehicles without a 
defined role, which are used for multiple tasks such as delivering feed 
and pigs, were named hereafter “undefined-vehicle.” For company B, 
105 vehicles were tracked, including 41 feed vehicles, 19 pig-farm- 
vehicles, 30 pig-market-vehicles, and 15 crew-vehicles. Company G 64 
vehicles were monitored, and all were classified as undefined-vehicles 
roles. From each vehicle, 12 months of daily GPS tracker records were 
collected, which comprised geographic coordinates for every five sec
onds of any vehicle in movement. In addition, each vehicle movement 
included a unique identification number, speed (in km/h), date, and 
time. We also gathered information on 14, 3, and 15 “company-owned 
cleaning stations” (CCS) from companies A, B, and G, respectively. Each 
CCS included centroid coordinates (latitude and longitude), address, and 
name. 

2.2. On-farm biosecurity data 

We extracted enhanced SPS biosecurity plans data from the Rapid 
Access Biosecurity (RAB) application (RABapp™) database (Machado 
et al., 2023). Briefly, the RABapp™ serves as a platform for standard
izing the approval of SPS-enhanced biosecurity plans while storing and 
analyzing animal and semen movement data. SPS biosecurity plans are 
part of a USDA and Pork Checkoff initiative (https://www.securepork. 
org/) to enhance business continuity by helping swine producers 
implement enhanced on-farm biosecurity measures on individual farms. 
An SPS biosecurity plan encompasses 169 unique biosecurity measures 
(written component) and farm maps (Center for Food Security and 
Public Health, 2017; Machado et al., 2023). Each farm map (Supple
mentary Material Figure S1) is formed of twelve biosecurity features, 
one of which is the Perimeter Buffer Area (PBA) is an outer control 
boundary around the line of separation to limit possible contamination 
near animal housing. It is not rare for farms to have more than one PBA 
because of how swine barns are distributed at a premise (Supplementary 
Material Figure S1). Therefore, because our methodology measures 
vehicle contacts to a group of barns within PBA in farms with more than 
one PBA, we created a unique “farm unit” identification to measure 
vehicle contact to each group of barns (Supplementary Material 
Figure S1). Our final farm population database for region one consisted 
of 2519 farm units, of which 2437 (96.7%) used PBA’s geolocation, 
while 82 (3.3%) farms did not have an on-farm biosecurity plan, we used 
farm’s centroid geolocation provided by the companies as an alterna
tive. Region two consisted of 4619 farm units with 1523 (33%) PBA’s 
geolocation and 3096 (67%) farms in which we used farm centroid 
geolocation due to the lack of on-farm biosecurity plans. 

2.3. Vehicle movement network 

2.3.1. Vehicle farm visit 
We defined a farm visit as a risk event in which vehicles pose a 

significant risk of disease introduction (Galvis et al., 2022a; Guinat et al., 
2016; Li et al., 2020; Neumann et al., 2021). Thus, a vehicle visit was 
registered when a vehicle stopped within a defined distance from a 
“farm unit,” named hereafter as “vehicle buffer distance” (VBD). In this 
study, we used three VBD sizes 50, 100, and 300 m. The VBD sizes were 
defined based on the average length of transportation vehicles used in 
swine production, which ranges from 12.5 m to 53.5 m (Walton et al., 
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2009). In addition, we also tracked the time vehicles spent at VBD and 
conditioned a vehicle visit according to a minimum elapsed time inside 
that area. This time was named “vehicle visit time” (VVT) (Fig. 1). It is 
worth noting that in some regions, third-party vehicles will deliver, for 
example, feed to farms of different companies. Because we were 
informed that vehicles may visit farms from different companies, and 
such movements could be associated with disease dissemination among 
companies (Smith et al., 2013), we also computed the contacts between 
companies A, B, and G to farm units from companies C, D, E, and F in 
region one and H, I, J, K, L, M, N, O, P, Q, R, and S in region two. 

2.3.2. Farm-to-farm contact network 
We assumed a vehicle is contaminated after visiting a farm unit 

(Bernini et al., 2019; Dee et al., 2002), with the potential to transmit 
pathogens to the subsequently visited farm units. Thus, in chronological 
order, we computed the contacts among farm units visited by each 
vehicle and referred to these contacts as edges (E) (Fig. 1). While we 
considered a range of VBD and VVT values to identify a vehicle visiting a 
farm unit (Section 2.3.1), to compute the direct contacts among farm 
units and reconstruct the contact network, we only evaluated the results 
of a VBD of 50 m and a VVT of five minutes due to limited computational 
resources. 

2.3.3 Pathogen stability: For most pathogens, the stability outside the 
host (a.k.a. environment) decreases as temperature increases (Espinosa 
et al., 2020). This phenomenon has been demonstrated for PEDV (Kim 
et al., 2018), PRRSV (Jacobs et al., 2010), and ASFV (Carlson et al., 
2020; Mazur-Panasiuk and Woźniakowski, 2020; Nuanualsuwan et al., 
2022). Here, we model pathogen stability decay as a function of time 
and pathogen exposure to environmental temperature. Thus, vehicle 
network edges are weighted by pathogen decay over time, as shown in 
Fig. 1 (Nuanualsuwan et al., 2022). Briefly, edge weight between two 
farm units is modulated by two variables: i) the number of minutes a 
vehicle takes to go from one farm unit to another (Γ); and ii) the average 
environmental temperature the vehicle was exposed to along the route 
between these two farm units (ω) (Fig. 1 and Supplementary Material 
Figure S2). We downloaded daily temperature raster layers with 1 km2 

resolution from Daily Surface Weather and Climatological Summaries 
(daynet) (Thornton et al., 2022). Here, the GPS geolocation of each truck 
was matched with the respective daily temperature raster along its route 
between farm units (Fig. 1). In addition, we assumed that pathogens’ 

stability decay obeys an exponential distribution, a function of the 
environmental temperature decay rate and cumulative time that the 
pathogen was exposed to the environment modulated by λω and Γ, 
respectively (Fig. 1). The edge weight values range between 1 and 0, 
with one a high pathogen stability and 0 a low pathogen stability. To 
avoid edges with extremely low weights, we assumed weights <0.0006 
were zero. Here, we evaluated edge weights frequency by grouping it 
into five categories: “>0.8 - 1”, “>0.6 - ≤0.8”, “>0.4 - ≤0.6”, “>0.2 - 
≤0.4,” and “>0 - ≤0.2”. 

2.3.3. Vehicle disinfection 
An effective farm vehicle visit to a CCS was when a vehicle came to a 

complete stop (0 km/h) within 500 m of a CCS for at least 60 minutes 
(60 minutes was based on personal communication from the standard 
operating procedures for a large swine producing company) (Fig. 1). We 
remark that eliminating 100% of organisms in vehicle surfaces via 
cleaning and disinfection is an optimistic assumption (Deason et al., 
2020; Dee et al., 2004; Mannion et al., 2008). For example, 18% to 6% of 
disinfected vehicles tested positive for salmonella (Mannion et al., 
2008), which could be translated to cleaning effectiveness of 82% and 
94%, respectively. Similarly, in a PEDV study, 46% of disinfected ve
hicles were positive for PEDV via swab (Boniotti et al., 2018), cleaning 
effectiveness of 54%. Thus, here we simulated cleaning effectiveness (d), 
defined as a standard proportion of vehicles successfully disinfected 
after a CCS visit, with all possible values ranging from 0% to 100%. 

2.4. African swine fever network scenario 

We utilized the new network methodology developed in subsection 
2.3 to simulate between-farm ASFV dissemination. The between-farm 
indirect dissemination of ASFV via contaminated vehicles has been 
described elsewhere (Neumann et al., 2021; Gebhardt et al., 2022), 
while recent studies evaluated ASFV stability under different tempera
tures (Supplementary Material Table S2) from which we extracted ASFV 
stability information used in our model. We used an exponential decay 
curve with different decay rates λ for each temperature (see subsection 
2.3.3 and Supplementary Material, Figure S2). The results of 
Mazur-Panasiuk et. al., 2020 were used for ASFV stability because it 
provided several stability metrics at different points in time that allowed 
us to reconstruct a robust decay stability curve (Supplementary Material 

Fig. 1. Network reconstruction framework. A vehicle visited a farm if the vehicle’s latitude and longitude were inside a buffer distance and for a minimum time 
specified by the visit time (red box, top-left panel). An edge connecting different farms is recorded if all farms were visited by the exact vehicle in decreasing 
chronological order and if the edge weight (E), which represents our pathogen stability, is higher than 0 (green box, bottom-right panel). In the example, a vehicle 
visited four different farms, creating edges from A1→ B1 and A1→C1, and B1→ C1, while no edges were recorded from A1, B1, and C1 to D1 because the vehicle 
stopped at a C&D before visiting D1 and the cleaning probability d was effective. The weight edges among the farms are calculated through an exponential dis
tribution, where λ is the decay rate for each average temperature (ω) from the source of the contact (e.g., farm A1, green dot) until the destination (e.g., farms B1 and 
C1, red dots). Similarly, Γ is the cumulative time from the source of the contact (e.g., farm A1, green dot) until the destination (e.g., farms B1 and C1, red dots). 
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Figure S2). Mazur-Panasiuk et. al., 2020 suggested that ASFV remains 
stable in soil for up to 9 days at 23 ◦C and 32 days at 4 ◦C, half-time was 
0.44 days at 23 ◦C and 1.88 days at 4 ◦C, and 90% decay of 1.48 days at 
23 ◦C and 6.26 days at 4 ◦C (Mazur-Panasiuk and Woźniakowski, 2020). 
We used a range of temperatures from 4 ◦C to 23 ◦C and assumed ASFV 
stability decay rate λ was 0.001 at 4 ◦C and this rate increased by 
4.48*10− 05 for each temperature degree increase. Given that ASFV 
stability on temperatures lower than 4 ◦C and higher than 23 ◦C was not 
available, we assumed that environmental temperatures lower than 4 ◦C 
use the same decay rate as 4 ◦C, and temperatures higher than 23 ◦C use 
the same decay rate as 23 ◦C. Even though cleaning and disinfection 
procedures have been investigated in ASFV (De Lorenzi et al., 2020), the 
contributions of cleaning and disinfection procedures in eliminating the 
virus from vehicle surfaces are still to be fully demonstrated (Gao et al., 
2023b; Li et al., 2020; Neumann et al., 2021). Because of that, we 
decided to simulate a range of pathogen reductions (d) from 0, 10%, 
50%, 80%, 90%, and 100%. 

2.5. Vehicle network outputs 

We evaluated nine vehicle visit scenarios, which included a factorial 
combination of three VBDs (50, 100, and 300 m) and three VVTs (5, 20, 
and 60 minutes). We evaluated the ratio of farm unit visits, and cumu
lative time vehicles spent within farm units and at cleaning stations. The 
ratio of farm unit visits was calculated as the number of times each 
vehicle visited a farm divided by the number of times each vehicle 
visited a cleaning station. The vehicle contact network was recon
structed following the steps and conditions described in Sections 2.3 and 
2.4 with the aid of the R programming language (R Core Team, 2023). 
Briefly, this network is represented by direct and weighted edges be
tween farms. Additionally, we ran ten simulations for each cleaning 
effectiveness scenario to estimate the edges among farms. We used eight 
metrics to compare networks: network density, number of edges in the 
static and temporal networks, in-degree, out-degree, degree and 
betweenness centralization, and outgoing contact chains (Supplemen
tary Material Table S3), evaluated via the R package igraph (Csardi and 
Nepusz, 2006; R Core Team, 2023). In addition, for region one, we 
combined all vehicle movements and referred to this group as the 
combined-vehicle type. Results are presented by vehicle types and for 
each region. 

3. Results 

3.1. Number of farm visits 

Table 1 shows that increasing the buffer distance around farm units 
leads to more vehicle visits while lengthening the minimum duration for 
a visit to count from 5 minutes to 20 or 60 minutes decreases the 
number of visits. These findings suggest a trade-off between buffer dis
tance and visit frequency. In region one, the total number of vehicle 
visits varied between a minimum of 47,847 and a maximum of 301,774 
visits (Supplementary Material Table S4), while the median by vehicle 

varied between 59 and 432 visits (Table 1). For region two, the total 
number of vehicle visits ranged from a minimum of 6951 to a maximum 
of 15,094 (Supplementary Material Table S4), while the median by 
vehicle varied between 112 and 231 (Table 1). 

The number of visits among vehicle types was found to vary signif
icantly with variations in VBD (50, 100, and 300 m) and VVT (5 and 
20 minutes). The median number of visits by vehicle varied from 474 to 
827 for feed-vehicles; 388 and 522 for pig-farm-vehicle; 277 and 360 
pig-market-vehicle; 210 and 309 for undefined-vehicles; 2 and 8 for 
crew-vehicles, while undefined-vehicles in region two the median of 
visits was 205 and 231 farm units. Conversely, we observed a marked 
decrease in the number of visits across all vehicle types, particularly for 
feed-vehicles, when the minimum duration required for a visit to be 
considered a farm visit was extended to 60 minutes. Supplementary 
Material Figure S3 shows that the median number of feed-vehicle visits 
ranged from 22 to 29 farm units. We also demonstrated that vehicles 
visited farm units under the management of different companies. 
Company A owned vehicle visited a maximum of 19 farm units across 
different companies in region one, whereas, in region two, vehicles 
serving multiple companies visited a maximum of 12 farm units (Sup
plementary Material Table S5). 

Regarding different farm types visited with VBD of 50 m and VVT of 
five minutes, finisher farm units were the most visited, with 33% of visits 
associated with feed-vehicles and less than 1% with crew-vehicles 
(Supplementary Material Figure S4). Pig-farm-vehicles made up 8.9% 
of all visits to nursery farm units, as shown in Supplementary Material 
Figure S4. Sow farm units were visited mainly by feed-vehicles (7.5%), 
followed by pig-farm-vehicles (7.2%), as shown in Supplementary Ma
terial Figure S4. 

3.2. Frequency of visits to clean stations 

In the scenario of 500 m and at least 60 minutes within a truck wash 
in region one, the vehicles with the most visits to cleaning stations were 
pigs-market-vehicles and pigs-farm-vehicles (as shown in Table 2 and 
Supplementary Material Figure S13). The ratio of visits between clean 
stations and farm units showed that for each clean station visited, 
undefined-vehicles visited, on average, 4.4 (IQR 2.2–27.8) farm units. 
This was followed by feed-vehicles (2.9, IQR 2.9–10.6), pig-farm- 
vehicles (2.4, IQR 1.8–2.9), crew-vehicles (1.6, IQR 1.6–1.6) and pig- 
market-vehicles (1.3, IQR 1.2–1.5). Similar results were observed in 
region two, where undefined-vehicles visited, on average, 1.6 (IQR 
1.3–2.1) farm units per clean station visit. Additional scenarios can be 
found in Supplementary Material Table S6-S10 and Figures S14-S15. 

3.3. The relationship between vehicle movement, the effectiveness of 
vehicle cleaning, and the stability of ASFV in the environment 

Our findings indicated slight fluctuation in network metrics across 
ten different cleaning and disinfection simulations in both study loca
tions (Figs. 2 and 3, and Supplementary Material Tables S11-S14). With 
a 100% cleaning efficacy, the maximum reduction of nodes was 14% of 
the crew-vehicle networks (Tables 3 and 4). On the other hand, the 
network constructed from vehicles transporting pigs to market displayed 

Table 1 
Show the median and the interquartile range (IQR) of farm units visited by each 
vehicle for one year.   

VVT 

VBD 5 minutes 20 minutes 60 minutes 

50 m 364 (170-680) (R1) 
205 (148-278) (R2) 

326 (141-540) (R1) 
196 (143-274) (R2) 

59 (23,150) (R1) 
112 (83-147) (R2) 

100 m 374 (175-703) (R1) 
215 (152-293) (R2) 

338 (147-552) (R1) 
207 (146-285) (R2) 

62 (25-157) (R1) 
118 (88-156) (R2) 

300 m 432 (202-820) (R1) 
231 (158-319) (R2) 

378 (162-651) (R1) 
218 (147-309) (R2) 

70 (28-183) (R1) 
127 (97-166) (R2) 

(R1) = region 1; (R2) = region 2 

Table 2 
Show the median and the interquartile range (IQR) number of clean stations 
visited by each vehicle for one year.  

Transportation role Median (IQR) 

Vehicle transporting feed (R1) 136 (21-359) 
Vehicle transporting pigs to farms (R1) 188 (99-238) 
Vehicle transporting pigs to market (R1) 206 (95-300) 
Vehicle transporting crew (R1) 5 (5-5) 
Vehicle undefined (R1) 39 (7-78) 
Vehicle undefined (R2) 138 (62-166) 

(R1) = region 1; (R2) = region 2 

J.A. Galvis and G. Machado                                                                                                                                                                                                                 



Preventive Veterinary Medicine 226 (2024) 106168

5

the most significant reduction in static and temporal views, with 88% 
and 91% fewer edges, respectively. Furthermore, vehicles transporting 
pigs to market exhibited the most significant reduction of in-degree and 
out-degree, with 92% fewer adjacent neighbors in the network. Finally, 
for region two, undefined vehicles showed the most substantial decrease 
in the number of farm units in the outgoing contact chains, with a 
reduction of 76% in the total number of farm units that could be 
potentially exposed to indirect contact through vehicle movements 
(Tables 3 and 4). 

Fig. 2 and Supplementary material Table S11 indicate that the level 
of centralization remained relatively constant across the simulated 
cleaning effectiveness (d) for the combined and crew vehicle networks 

without any significant variation. On the contrary, as d increased, a 
slight decrease in degree centralization was observed in vehicles trans
porting feed, while a more evident reduction was observed for all the 
other vehicle types (Fig. 2). On the other hand, the betweenness 
centralization was mainly the same across simulated ds for all vehicle 
types. 

The edge weight distribution of the combined vehicles network had 
6–13% of edges with ASFV stability between 0.8–1 and 61–72% of ASFV 
stability between 0–0.2 (Tables 3 and 4, and Supplementary Material 
Table S13). In the feed vehicles network, 5% and 10% of all edges were 
in scenarios with ASFV stability of 0.8 to 1, while stability between 0 and 
0.2, the median number of edges varied between 63% and 73%. The 

Fig. 2. Distribution of network metrics from ten different reconstructed vehicle contact networks using a VBD of 50 m and a VVT of five minutes and six 
cleaning probabilities. Bar graphs represent the median values for each clean probability, and the error line is the minimum and maximum ranges for each 
distribution. 

J.A. Galvis and G. Machado                                                                                                                                                                                                                 



Preventive Veterinary Medicine 226 (2024) 106168

6

Fig. 3. The number of farm units contacted through the outgoing contact chain from vehicle movements. Solid lines represent the median, while shadow 
areas represent the interquartile ranges. (R1) = region 1; (R2) = region 2. 

Table 3 
Summary of network metrics. Values represent the median of ten stochastic simulations for each d evaluated; all d values and IQR are available in Supplementary 
Material Tables S11-S12 and S14.  

Network metric Combined-vehicles-R1 Feed-vehicles-R1 Pig-farm-vehicles-R1 Pig-market-vehicles-R1 

Cleaning scenarios Values with 
d = 0% 

% Decreased with 
d = 100% 

Values with 
d = 0% 

% Decreased with 
d = 100% 

Values with 
d = 0% 

% Decreased with 
d = 100% 

Values with 
d = 0% 

% Decreased with 
d = 100% 

Summary network metrics 
Nodes 2159  .05% 2151  0% 2103  0.1% 1618  1.6% 
Edges static 

network 
1232,684  36% 1018,941  31% 207,232  83% 139,786  88% 

Density 0.19  36% 0.16  31% 0.03  83% 0.02  88% 
In-degree 476  36% 338  28% 63  84% 38  92% 
Out-degree 477  37% 336  29% 61  88% 38  92% 
Edges temporal 

network 
5583,703  57% 3846,333  52% 841,987  84% 359,796  91% 

Outgoing contact 
chain 

2157  1% 2159  1% 2089  26% 1507  43% 

Summary of edge weight metrics 
Edges of ASFV 

stability >0.8-1 
339,490  6% 198,947  8% 87,603  1% 20,226  16% 

Edges of ASFV 
stability >0-<0.2 

4031,537  64% 2799,520  58% 582,593  96% 261,215  98% 

(R1) = region 1 
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edges of vehicles transporting pigs with an ASFV stability >0.8 - 1 
ranged from 10% to 64% and >0 - ≤0.2 from 15% to 69%. The vehicles 
transporting pigs to market edges ranged between 6% and 51% for ASFV 
stability >0.8 - 1, while the number of edges with stability between 
0 and 0.2 varied between 15% and 73%. For the crew vehicle network, 
the median number of edges with an ASFV stability >0.8 - 1 varied 
between 29% and 100%, while the edges with an ASFV stability >0 - 
≤0.2 varied between 0% and 54%. The undefined vehicles network in 
region one exhibited a median number of edges with an ASFV stability 
>0.8 - 1 varied between 6% and 8%, while the edges with an ASFV 
stability >0 - ≤0.2 varied between 68% and 72%. Finally, the network of 
undefined vehicles in region two showed that the median number of 
edges with an ASFV stability >0.8 - 1 varied between 5% and 47%, and 
edges with an ASFV stability >0 - ≤0.2 varied between 20% and 75%. 

4. Discussion 

In this study, we developed a novel transportation vehicle contact 
network methodology that explicitly considers environmental pathogen 
stability and vehicle cleaning effectiveness uncertainties. We demon
strated that when cleaning and disinfection were either not performed in 
between farm visits or were simulated to be not effective (d = 0%), the 
vehicle’s contact networks had 5583,703 edges in region one and 
128,483 in region two. This means that 88% of 2519 farm units in region 
one and 9% of 4619 farm units in region two were connected and 
potentially exposed to infected vehicles. When cleaning and disinfection 
were simulated at 100% effective in region one, the number of edges was 
reduced by 57%, yet 87% of farm units were still connected. In region 
two, the number of edges was reduced by 89%, and the farm units 
connected decreased from 9% to 2%. Additionally, for our simulated 
pathogen stability scenarios, with d = 100%, up to 13% and 47% of 
edges in regions one and two, respectively, were highly contaminated 
(ASFV stability range of 0.8 to 1), thus posing significant disease spread 
risk. Ultimately, we demonstrated that cleaning and disinfection 
reduced the number of edges in the vehicle to farm units’ movement 
network. Nevertheless, it was not sufficient to eliminate the risk of ve
hicles in disease dissemination, but it disrupted the underlying structure 
of the vehicle network. 

The frequency of visits by pig-farm-vehicles and pig-market-vehicles 
to cleaning stations was directly related to how cleaning and disinfection 
disrupted their networks. This suggests that cleaning and disinfection 
had a significant effect on disconnecting networks. We demonstrated 
that pig-market-vehicles visit cleaning stations for every other farm 
visit, and pig-farm-vehicles after three farm visits. On the other hand, 
feed-vehicles were disinfected after two and 12 farm units, and 
undefined-vehicles between three and 80 farm units (Supplementary 

Material Figure S15). The few cleaning feed vehicles are probably 
because of the perceived risk of contamination from these vehicles, 
which do not have direct contact with animals (Boniotti et al., 2018; 
Henry et al., 2018). Undoubtedly, pig-farm and pig-market vehicles 
transporting animals in direct contact with infected organic material are 
usually recognized as high risk of disease dissemination (Alarcón et al., 
2021; Mannion et al., 2008). However, recent studies in Vietnam and 
Mexico demonstrated the association between feed vehicles and ASFV 
dissemination (Gebhardt et al., 2022) and PEDV (Garrido-Mantilla et al., 
2022). Therefore, regardless of the vehicle’s transportation function, we 
emphasize the significance of increasing the frequency of disinfecting 
vehicles between farm visits to reduce the number of indirect contacts 
between farms. It is essential to mention that if cleaning and disinfecting 
are prohibited due to cost or logistic challenges (e.g., freezing weather), 
as described elsewhere (Denver et al., 2016; Weng et al., 2016), it is 
recommended that efforts be made to prioritize the disinfection of ve
hicles used for transporting animals after each farm visit at a minimum 
(Porphyre et al., 2020). In addition to the challenges of cleaning and 
disinfecting, alternative strategies to minimize indirect contact between 
farms could involve redirecting vehicles based on factors such as the 
health status of farms and distance, as proposed in Sweden (Nöremark 
et al., 2009). 

As described in recent studies (Büttner and Krieter, 2020; Galvis 
et al., 2022a), transportation vehicles and animal movement network 
configurations differ significantly. It has been demonstrated that the 
vehicle transportation network links up to 100 times more farms than 
the animal movement network (Büttner and Krieter, 2020; Galvis et al., 
2022a), which directly impacts the effectiveness of network risk-based 
farm ranking often proposed in disease control programs (Büttner and 
Krieter, 2020). Our results show that vehicle transportation networks 
are not as pyramidal as the pig movement networks, in which breeding 
farms are on the top of the pyramid and finisher farms are at the bottom 
(Lee et al., 2017; Schulz et al., 2017) (Supplementary Material 
Figures S17-S30). As such, because vehicle movement network config
uration is more chaotic, it poses an increased risk of disease dissemi
nation, making target control strategies more challenging to implement 
(Galvis et al., 2022a; VanderWaal et al., 2018). 

Despite our simulated cleaning effectiveness scenarios, we uncover 
highly connected vehicle networks, except crew vehicle networks, 
which connected fewer farm units. Interestingly, we observed through 
the degree of centralization that the number of farms heavily inter
connected (a.k.a. hubs) by vehicles transporting pigs and undefined 
vehicle networks was less frequent when cleaning efficacy was 100%. 
Given that contact networks with fewer hubs have been associated with 
slow disease propagation (Kiss et al., 2006; Martínez-López et al., 2009), 
increasing cleaning efficacy is indeed expected to impact disease 

Table 4 
Summary of network metrics. Values represent the median of 10 stochastic simulations for each d evaluated; all d values and IQR are available in Supplementary 
Material Tables S11-S12 and S14.  

Network metric Crew-vehicles-R1 Undefined-Vehicles-R1 Undefined-Vehicles-R2 

Cleaning scenario Values with d =
0% 

% Decreased with d =
100% 

Values with d =
0% 

% Decreased with d =
100% 

Values with d =
0% 

% Decreased with d =
100% 

Summary network metrics 
Nodes  7  14% 1848  0.1% 450  2% 
Edges static network  23  69% 290,960  30% 21,385  82% 
Density  0.000004  69% 0.05  30% 0.001  82% 
In-degree  0  0% 100  54% 0  0% 
Out-degree  0  0% 100  54% 0  0% 
Edges temporal network  24  71% 535,563  30% 128,483  89% 
Outgoing contact chain  3  66% 1760  0.2% 437  76% 
Summary edge weight metrics 
Edges of ASFV stability 
>0.8-1  

7  0% 32,707  3% 6973  3% 

Edges of ASFV stability >0- 
<0.2  

13  100% 388,136  34% 95,888  97% 

(R1) = region 1; (R2) = region 2 
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dissemination through vehicle movements (Porphyre et al., 2020). 
Measuring the outgoing contact chain, we demonstrated that 88% of 

the farms were interconnected. Büttner and Krieter, 2020 reported 
similar results in which 70% to 97% of the farms became infected via 
transportation network. Galvis et. al., 2022, demonstrated that vehicles 
transporting feed significantly contributed to PRRSV dissemination to 
breeding sites, and VanderWall et al., 2018, demonstrated that feed 
vehicles have a high potential to introduce PEDV into new geographical 
areas. Although contamination and disease transmission through feed 
vehicles are less likely than through vehicles transporting animals, they 
still pose a significant risk (Büttner and Krieter, 2020; Galvis et al., 
2022a,b; Sykes et al., 2023). On the contrary, pig-farm-vehicles, pig-
market-vehicles, and undefined-vehicles interconnected fewer farm 
units. Importantly, we observed that 100% cleaning efficacy reduced by 
26% and 43% the potential number of infected farm units via vehicles 
transporting pigs to farms and markets, respectively. It is worth 
mentioning that we observed significant variability in the effectiveness 
of reducing the number of farm units in the contact chain of pig and 
market vehicle networks when we simulated a cleaning efficacy of less 
than 100% (Fig. 3). As previously discussed, these two types of vehicles 
are more prone to become contaminated while visiting farms. Hence, 
attaining a cleaning efficacy of nearly 100% is critical to mitigating the 
spread of diseases among swine production through contaminated ve
hicles that transport pigs (Boniotti et al., 2018; Mannion et al., 2008). It 
is worth highlighting that our findings revealed an unexpected behavior 
of the contact chain of the unidentified vehicle network in region two 
after 120 days. That was because GPS data of company G vehicles started 
to be collected in its entirety in May 2020 (as per personal 
communication). 

We demonstrated that vehicles connect farm units of various swine- 
producing companies, thus posing a potential risk for between-company 
dissemination. Pathogen dissemination among swine companies is 
plausible and described earlier (Jara et al., 2020; Smith et al., 2013). 
Jara, et. al., 2020 identified distance from farms to roads as a risk for 
transmission, and Seedorf and Schmidt, 2017 suggested that vehicle 
movements may disseminate bioaerosols in the surrounding area, 
creating a potential infection risk for farms situated close to roads. At 
least in densely swine-populated regions in which the traffic of swine 
production related vehicles is elevated, it is likely that infectious path
ogens may be circulating among swine companies, even in the absence 
of farm visits (Seedorf and Schmidt, 2017). Future transmission models 
should formally account for this novel indirect route of intercompany 
transmission to investigate its potential contributions to disease spread. 

The outcomes of our study indicated that the majority of farm-to- 
farm network connections had low ASFV stability, with less than 0.2 
quantity of viable virus, thereby posing a low risk of disease trans
mission (Carlson et al., 2020; Mazur-Panasiuk and Woźniakowski, 2020; 
Nuanualsuwan et al., 2022). Due to our analysis that considers the 
decline of ASFV stability to 90% within a maximum of 6.26 days of 
exposure to the environment, we expected a significant number of 
movements with low ASFV stability (Mazur-Panasiuk and 
Woźniakowski, 2020). It is noteworthy that cleaning and disinfection 
had a significant impact on reducing the number of contacts between 
farm units. When disinfection efficacy was at 100%, the edges in the 
combined-vehicle network with ASFV ≤0.2 reduced by 64%, whereas in 
the pig-market-vehicle network, this reduction was even more sub
stantial, at 98%. Conversely, cleaning and disinfection efficacy did not 
substantially impact the reduction of contacts between farm units where 
ASFV stability exceeded 0.8. The highest reduction, with 16% fewer 
edges with 100% disinfection, was observed in the pig-market-vehicle 
network. Feed-vehicles and pig-farm-vehicles had the highest number 
of movements and ASFV stability greater than 0.8, even with 100% 
disinfection, in which pig-farm-vehicles pose an exceptionally high risk 
of disease dissemination due to their direct contact with animals 
(Alarcón et al., 2021). In conclusion, our findings suggest that enhancing 
the effectiveness of cleaning protocols has a limited impact on 

decreasing the number of inter-farm contacts for vehicles, particularly in 
this simulation with elevated ASFV stability values. However, it may 
influence the disease propagation by disrupting the underlying structure 
of the vehicle movement network. 

5. Limitations and further remarks 

We recognize the limitations of the novel methodology for the pro
posed vehicle movement network and the available vehicle movement 
data. It is worth noting that the absence of data from vehicles serving 
most, but not all, premises in both regions underestimated the outcomes 
concerning indirect contact between companies and networks metrics 
evaluated at the regional level. Likewise, we were unaware of third- 
party vehicle washing locations; this limitation likely impacted signifi
cantly the crew and undefined vehicle networks, since smaller vehicles 
are more prone to be clean at drive-throughs at gas stations. In addition, 
information about the biosecurity measures implemented at CCS and 
premises was unavailable. These measures, which may include disin
fection products, methods, and frequency (e.g., before/after farm visits), 
are likely to have a significant association with effective cleaning (De 
Lorenzi et al., 2020). Therefore, incorporating these biosecurity pro
tocols into future studies is expected to enhance the reliability of our 
findings. The assumption of 60 minutes being adequate to fully clean 
and disinfect a vehicle may not hold in regions with freezing tempera
tures (Gao et al., 2023a). Additionally, it should be noted that our novel 
network methodology utilizes GPS data from the vehicle cab and does 
not monitor trailers. This is because most swine companies do not track 
trailers via GPS; some trace trailers based on plate identification. This is 
a critical data limitation; however, because our methodology only re
quires GPS data, it can be used to reconstruct trailer networks when the 
data becomes available. Similarly, truck drivers with contaminated 
boots have been associated with disease dissemination (Dee et al., 
2002). Also, Perri, et al., (2020), showed that drivers might step out of 
the truck at farms (Perri et al., 2020); thus, in future studies, 
between-farm driver movement networks should be further 
investigated. 

Due to the imminent risk of ASFV introduction into the U.S., its 
remarkable stability in the environment (Mazur-Panasiuk and 
Woźniakowski, 2020), high transmissibility, and the significant eco
nomic losses (You et al., 2021), it is imperative to enhance our under
standing of the potential dissemination routes, to prepare better and to 
formulate and revise effective control strategies (Sykes et al., 2023). As 
for the assumptions about the stability of pathogens, our primary limi
tation was that we used soil as the reference material for ASFV stability, 
as indicated by Mazur-Panasiuk and Woźniakowski (2020). While 
studies examined ASFV stability in different materials (Nuanualsuwan 
et al., 2022), we opted to streamline our approach by considering the 
data from ASFV in soil. This choice was made due to the extensive viral 
stability measurements investigated by Mazur-Panasiuk and 
Woźniakowski (2020), which enabled us to construct a more sophisti
cated ASFV decay curve. Similarly, we simplified the temperature effects 
on the ASFV stability curve due to prior evaluations of only extreme 
temperature ranges, including cold and warm scenarios such as 4 ◦C and 
23 ◦C (Carlson et al., 2020; Mazur-Panasiuk and Woźniakowski, 2020; 
Nuanualsuwan et al., 2022). Not considering temperatures below 4 ◦C 
might have underestimated the connections between farms given the 
ASFV stability in low temperatures (Mazur-Panasiuk and Woźniakowski, 
2020; Gao et al., 2023a). Consequently, the interpretation of this study is 
more suitable for U.S. regions with warmer climates. Despite the limi
tations, this study is the first to recreate the between-farm networks 
using actual vehicle movement data of commercial swine companies in 
North America. This is also the first study that combined vehicle GPS 
data with pathogen environmental stability and vehicle cleaning and 
disinfection effectiveness. We demonstrated the potential role of vehi
cles in the spread of between-farm swine diseases, providing the swine 
industry and regulatory agencies with the necessary information to 
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develop effective control strategies against future threats. 

6. Conclusion 

In this study, we extended a previously developed methodology for 
vehicle contact networks, which is commonly employed in disease 
transmission models (Galvis et al., 2022a,b; Sykes et al., 2023). In this 
updated approach, we have considered the uncertainty related to the 
processes of vehicle cleaning and disinfection, as well as the decay of 
ASFV stability in the environment. Our study revealed that although 
efficient cleaning and disinfection measures affected the number of 
farms connected through vehicle movements, simulations with 100% 
cleaning and disinfection still resulted in 88% of farms being in contact 
over one year. Importantly, achieving 100% cleaning effectiveness 
reduced the risk of between-farm contacts only when the ASFV stability 
was low (≤0.2). Conversely, there was an insignificant reduction in the 
number of between-farm contacts when the ASFV stability was still high 
(>0.8). We noted that farms of different swine production companies 
were visited by vehicles that also visited farms under other production 
companies, enhancing the potential for between-company dissemina
tion. This study enhances our understanding of the role of transportation 
vehicles in spreading diseases between farms and the risks involved. The 
new methodology introduced in this study can be used to develop novel 
disease control strategies, including rerouting vehicles based on their 
infection status. 
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