

Swine Disease Global Surveillance Report

Worldwide pork production is highly interconnected by trade between countries and markets which could increase the risk of introduction of foreign pathogens into the US.

PROJECT

The aim of these reports is to have a system for near real-time identification of hazards that will contribute to the mission of assessing risks to the industry and ultimately, facilitate early detection and identification, or prevent occurrence of events, in partnership with official agencies, and with our international network of collaborators.

Monthly reports are generated through a systematic process that involves screening various official data sources, including government and international organization websites, as well as softer sources such as blogs, newspapers, and unstructured electronic information from around the world. These data are then curated to create a raw repository.

Subsequently, a multi-criteria rubric is applied to evaluate each event. This rubric assesses factors like novelty and the potential direct and indirect financial impacts on the US market. The outcome of this rubric application is a final score assigned to each event.

These final scores, along with an epidemiological interpretation of the event's context, are published.

The interpretation encompasses details like the credibility of the information, the scale and speed of the outbreak, its connectedness to other factors, and the local capacity to respond.

These communications and the information contained therein are for general informational and educational purposes only and are not to be construed as recommending or advocating a specific course of action.

CENTER FOR ANIMAL
HEALTH AND FOOD SAFETY
UNIVERSITY OF MINNESOTA

University of Minnesota Technical Coordination

Valeriia Yustyniuk, Sylvester Ochwo, Rachael Schulte, Sol Perez¹

Expert Focus group

Jerry Torrison, Montserrat Torremorell, Cesar Corzo, Megan Niederwerder, Lisa Becton, Andres Perez

¹ Project Leader . E-mail: mperezag@umn.edu

www.cahfs.umn.edu

SPONTANEOUS REPORTING TOOL

[SEE CURRENT AND PREVIOUS REPORTS](#)

Swine Disease Global Surveillance Report

Tuesday, January 7, 2025, to Monday, February 2, 2026

Report Highlights

- **ASF in Latvia:** Authorities report the first farm-level outbreak of the year at one of Latvia's largest commercial pig operations; more than 22,000 domestic pigs on site.
- **ASF in South Korea:** Authorities report four farm-level outbreaks in January, a sharp increase compared with six cases reported in all of 2025.
- **ASF in the Philippines:** Authorities report a sharp reduction in active ASF cases, from 98 barangays in nine regions at the end of December 2025 to eight barangays in three regions by mid-January.
- **FMD in Israel:** Authorities report the first detection of FMD SAT1, with multiple outbreaks in cattle and goats reported in January.

JANUARY 2026 - OUTBREAKS BRIEF

R	Location	Report Date	Dx	Impact
2	Gangwon province, South Korea	Jan	ASF	Four commercial farms affected - almost 50,000 pigs affected across all sites
2	Vaiņodes bekons (southern region), Latvia	1/21	ASF	Commercial farm - over 22,000 pigs affected
2	Qidmat Zevi, Israel	1/29	FMD SAT 1	First report of serotype SAT 1 in the country, affecting free-ranging cattle
1	Arad County, Romania	1/8	ASF	Outbreak in a commercial farm - over 6,000 pigs affected
1	Several provinces, South Korea	1/31	FMD O	First outbreak since April 2025 in a cattle farm - 246 head of cattle affected
1	Northeast District (near the border with Zimbabwe), Botswana	1/25	FMD SAT 1	Over 200 cattle affected
1	Matabeleland South Province, Zimbabwe	1/16	FMD SAT 1	Over 2,400 susceptible cattle affected

Outbreaks described in the table above are colored according to an assigned significance score. The score is based on the identified hazard and potential to affect the US swine industry. Rank (R) Blue: 1 - no change in status; Red: 2 - needs extra attention as the situation is dynamic; Black: 3 - requires consideration or change in practices to reduce exposure to the US swine industry.

African Swine Fever

EUROPE

In January (1/1/2026-28/1/2026), **five European countries** (Bosnia and Herzegovina, Croatia, Moldova, Romania, and Serbia) reported **46 outbreaks in domestic pigs** to EU ADIS, a number consistent with the previous month (n=45). During this period, Romania and Latvia reported outbreaks affecting large commercial farms, while Lithuania reported no additional outbreaks.

Over the same period, **16 European countries** (Bosnia and Herzegovina, Bulgaria, Croatia, Estonia, Germany, Hungary, Italy, Latvia, Lithuania, Moldova, Poland, Romania, Serbia, Slovakia, Spain, and Ukraine) reported **1043 outbreaks in wild boar**, representing a slight decrease compared to the previous month (n=1300). The highest numbers of outbreaks were reported by Poland (n = 237), Bulgaria (n = 171), and Lithuania (n = 152).

The spatial distribution of ASF outbreaks across Europe between January 1 and January 28, 2026 is presented in Figure 1.

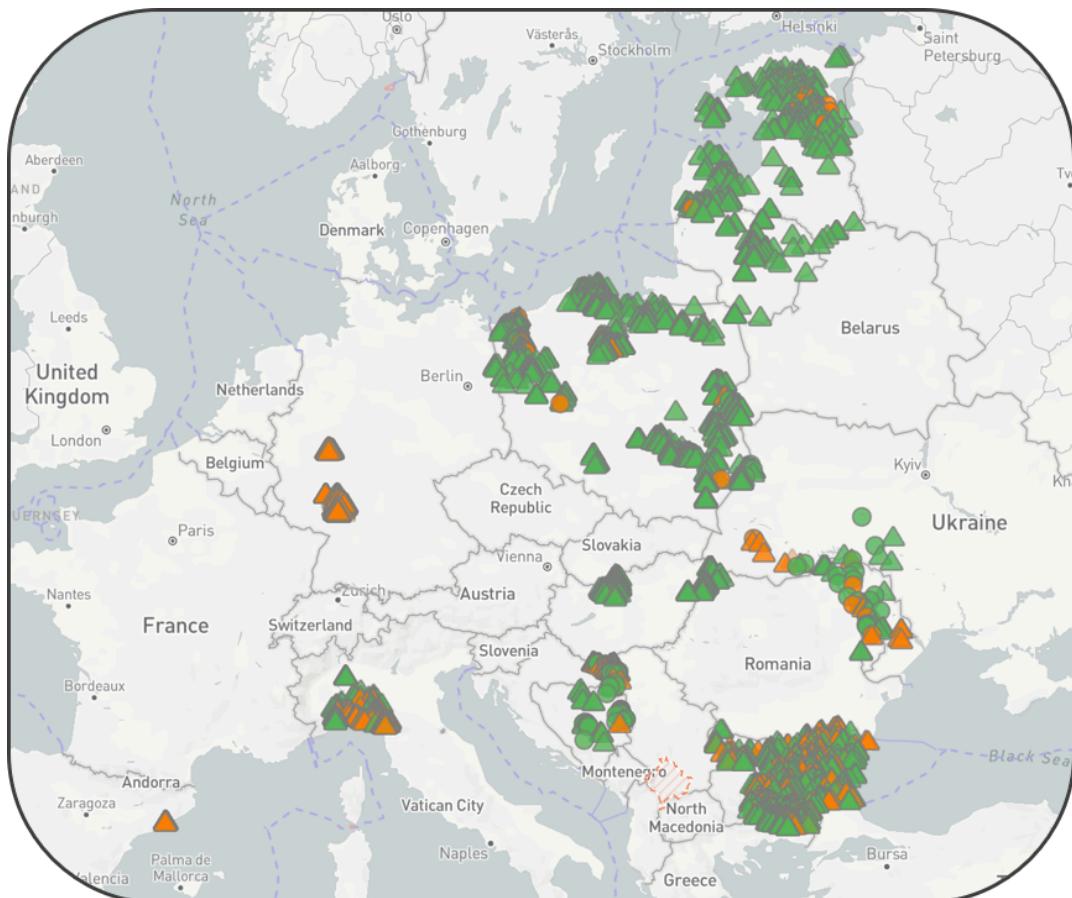


Figure 1. The distribution of African swine fever outbreaks reported in Europe from January 1 to January 28, 2026 (in orange: ongoing outbreak; green: resolved; circles: domestic pigs; triangles: wild boar (Source: [WAHIS-WOAH](#))

Regional Highlights:

- **Romania | January 8: ASF confirmed at a commercial pig farm in Cermei commune, Arad County, affecting a unit with approximately 6,000 pigs and marking the first commercial farm-level outbreak in the area since late 2025.** In the initial response phase, 1,500 pigs from the affected production area where the virus was detected are being preventively culled, with contingency plans to depopulate the remaining 4,500 pigs if the spread to the second area of the farm is confirmed. Authorities have established a control zone, encompassing several large pig farms, alongside clinical examinations, movement restrictions, and a ban on animal transport; carcasses are being disposed of via controlled burial. This follows the closure of the previous 2025 outbreak in Olari commune, where over 5,600 pigs were culled as a precaution.
- **Spain | January 14: ASF remains confined to wild boar in Catalonia, with intensified surveillance confirming continued circulation within a limited geographic area.** As of January 14, authorities reported 635 wild boar tested since Christmas, combining active surveillance (300 animals captured) and passive surveillance (335 carcasses or symptomatic animals found), with 60 positives (9.4%), all detected within the established surveillance zones around the initial Barcelona-area outbreak; all domestic pig farms remained ASF-free. As of January 29, the cumulative total reached 103 ASF-positive wild boar (Figure 2).

Although no commercial herds have been affected, Spain's ASF status has triggered export restrictions under EU and international rules, including nationwide bans or region-specific limitations imposed by key trading partners, leading to an abrupt loss of access to high-value non-EU markets. This has resulted in sharp pork price declines and substantial economic losses for producers, particularly in Catalonia, where margins have shifted from profit to sustained losses, and sector-wide losses are estimated in the tens of millions of euros.

Prolonged export restrictions and price pressure are expected to force restructuring in Spain's pig sector, leading to adjustments in production levels and marketing strategies. At the global level, reduced Spanish export capacity is contributing to shifts in pork trade flows, creating backfill opportunities in markets Spain previously served; however, these are expected to be captured primarily by competitors such as Brazil, which maintains strong access to Asian markets, particularly China.

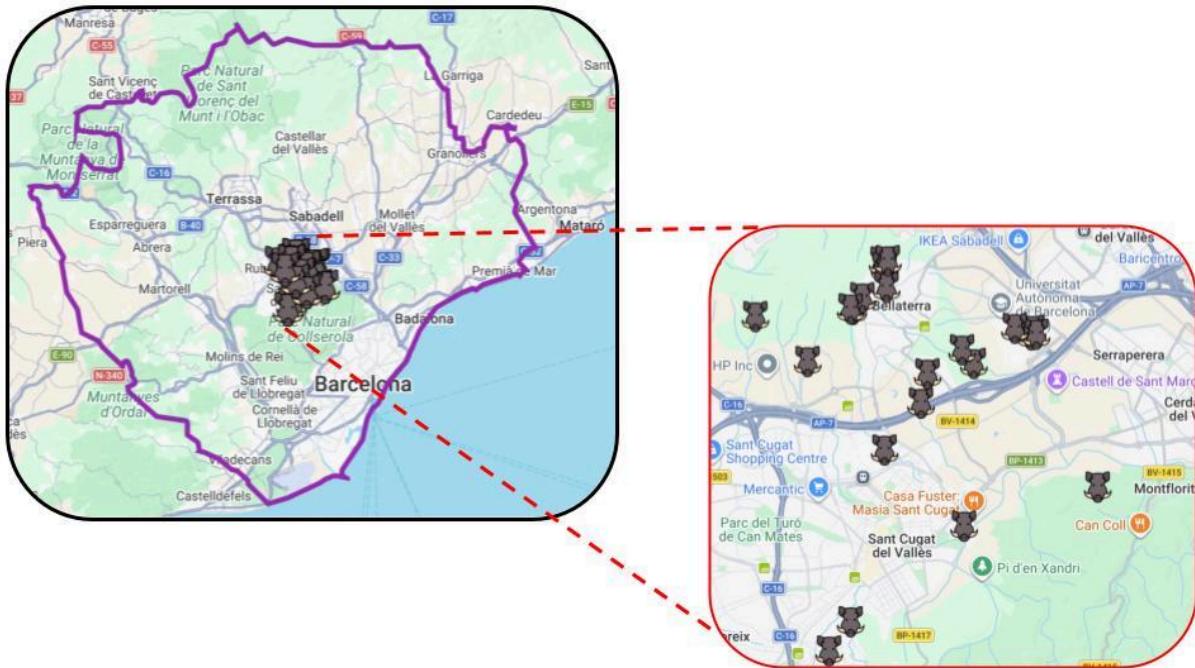


Figure 2. Spatial distribution of ASF cases in wild boar in Spain from November 26, 2025, to January 21, 2026; the infected area is delineated by a purple boundary line. (Source: [ASF Spain 2026](#))

- **Latvia | January 21: First farm-level ASF outbreak of the year detected at one of Latvia's largest commercial pig farms.** Vaiņodes bekons, in Vaiņode parish (Dienvidkurzeme municipality), houses over 22,000 domestic pigs. Authorities have initiated containment measures, including quarantining the facility, imposing movement restrictions on pigs and pig products, intensifying biosecurity inspections at surrounding holdings, and commencing culling in infected housing units, while an epidemiological investigation is underway to determine the source of infection. **Efforts are being made to limit depopulation by managing the farm as separate production units.** In parallel, ASF continues to circulate widely in wildlife, with 83 ASF-positive wild boar detected to date in 2026, and more than 11,000 wild boar cases recorded since 2014, underscoring sustained environmental pressure. The outbreak poses a significant economic risk given the farm's scale and role in the regional pork supply.

ASIA

In January, ASF remains unevenly distributed, with improving control and declining affected areas in countries such as the Philippines and parts of India, while sporadic outbreaks, supply-chain detections, and enforcement actions in countries including South Korea, Vietnam, Bhutan, and Taiwan underscore the continued risk of re-emergence and the need for sustained surveillance, biosecurity, and market

controls. Figure 3 illustrates the spatial distribution of outbreaks in Asia from mid-December to mid-January.

Regional Highlights

- **Bhutan | January 5: The first ASF outbreak of 2026 was confirmed at a backyard pig farm, with swill feeding identified as the likely source of infection.** According to WOAH and the Ministry of Agriculture and Livestock, three pigs were affected and 22 were at risk at a smallholding in Hatigar village, Logchina area, Chhukha District.
- **India | January 16: ASF has been brought under control in Mizoram, according to state authorities, following severe impacts in 2025.** The last ASF-related death was reported on December 8, when a single pig died in the Ainawn locality of Aizawl, and no new cases have been detected since December 9, with no further spread of infection. During 2025, ASF caused the death of over 9,700 pigs, affected more than 12,500 pig-rearing families, and resulted in estimated losses of USD \$13–14 million (INR 114–115 crore). Since the disease was first detected in 2021, ASF has impacted eight of Mizoram's 11 districts, with cumulative losses exceeding USD \$120 million (INR >1,011 crore). While the situation has stabilized, authorities continue surveillance and biosecurity measures to prevent re-emergence.

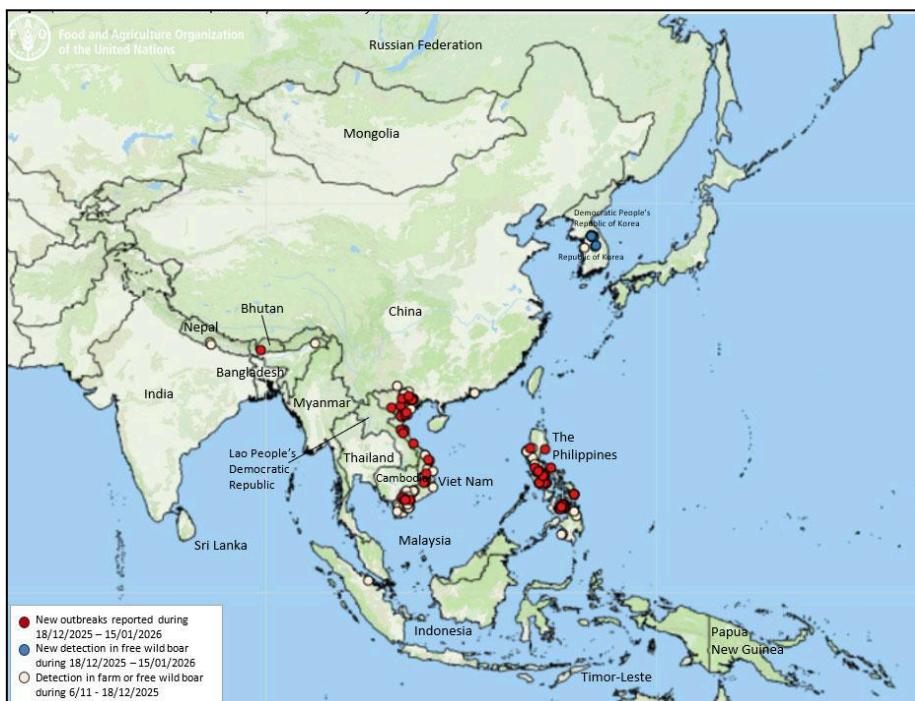


Figure 3. The distribution of African swine fever outbreaks in Asia from December 18, 2025, to January 15, 2026, (in red: domestic pigs; in blue: wild boar; in white: detection in farm or free wild boar during 11/6-12/12/2025
 (Source: [FAO EMPRES-i](#)).

- **South Korea | January: Four outbreaks in domestic pigs were reported in January, a sharp increase compared with six cases reported in all of 2025.** The first ASF outbreak of 2026 was confirmed on January 17 at a large commercial pig farm in Gangneung, Gangwon Province, where more than 20,000 pigs were raised; authorities ordered full culling, established a quarantine zone, and imposed movement restrictions. This was followed by a

second outbreak on January 24 at a pig farm in Miyang-myeon, Anseong (Gyeonggi Province), affecting 2,459 pigs, all of which were preventively culled. On January 25, a third outbreak was confirmed at a farm in Pocheon (Gyeonggi Province), involving approximately 8,500 pigs, with expanded movement bans and intensive disinfection in surrounding areas. The fourth outbreak was confirmed on January 27 at a large farm in Yeonggwang County, South Jeolla Province, housing approximately 21,000 pigs, triggering a 48-hour nationwide standstill for pig farms and related facilities. The distribution of these outbreaks is shown in Figure 4. Despite the short intervals between detections, sometimes one to two days apart, and the proximity to major pork-producing regions and transport corridors, the market impact remains limited, with total culling accounting for less than 1% of annual hog slaughter and minimal disruption to domestic pork supply and prices reported so far.

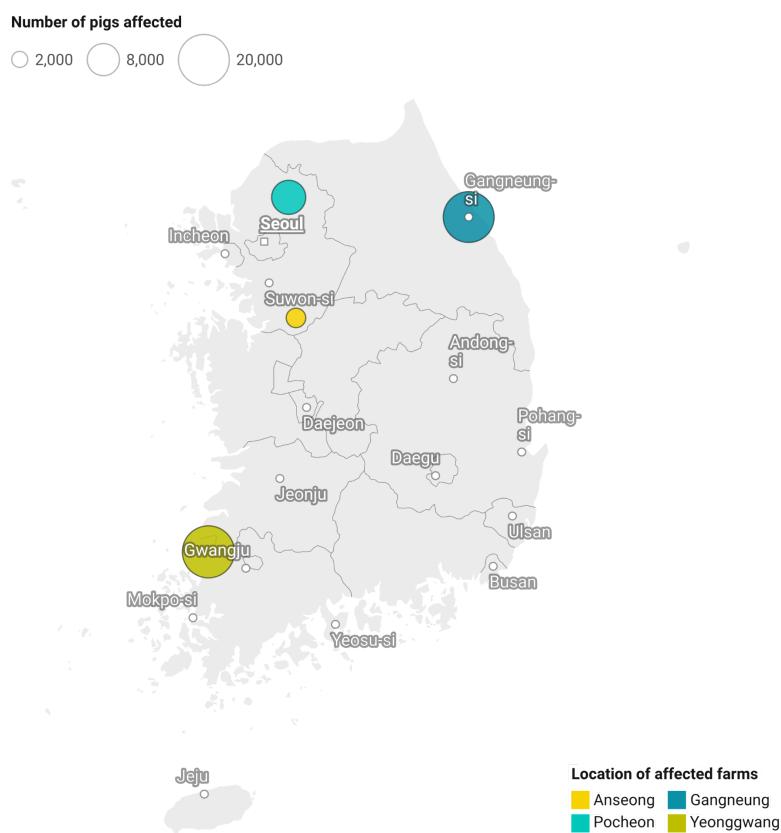


Figure 4. ASF outbreaks in domestic pigs in South Korea from January 17 to January 27, 2026

Why do ASF outbreaks in South Korea appear sporadic and isolated?

The outbreaks appear to occur every few months and often present as isolated farm events, which may reflect the country's strong capacity to limit secondary transmission once a case is detected. Following confirmation of ASF, authorities typically implement rapid stamping-out, movement restrictions, vehicle standstills, and intensive disinfection measures that likely reduce the risk of farm-to-farm spread. As a result, domestic pig outbreaks are often reported as single-farm introductions rather than as expanding regional clusters, creating the impression of sporadic, disconnected events rather than sustained circulation within the commercial sector.

How is ASF spreading in South Korea?

The dominant transmission pathway is repeated re-introduction from outside the commercial farm sector, rather than sustained circulation within it. Evidence from epidemiological studies shows that:

- Wild boar populations act as a persistent reservoir, particularly in forested and mountainous regions.
- Human-mediated pathways, especially contaminated vehicles, personnel, feed, or equipment, are the most likely routes by which the virus jumps from wildlife or contaminated environments into commercial farms.
- Direct wild boar-to-farm contact is less common than indirect transmission via human activity, which explains why outbreaks often occur near transport corridors rather than deep wilderness areas.

This combination leads to episodic spillover events rather than continuous farm-level transmission.

How is South Korea different from the EU situation?

The key difference lies in where ASF has become endemic:

- **South Korea:** ASF is effectively endemic in wild boar, but not endemic in domestic pigs. Control measures are strong enough to prevent sustained farm-to-farm spread, so outbreaks remain limited in number and duration.
- **European Union** (particularly Baltic States, Poland, Romania, parts of Germany and Italy): In many regions, ASF has become endemic in wild boar and periodically entrenched in domestic pig sectors, especially where farm density is high, and biosecurity varies. This leads to long-lasting regional clusters, prolonged restriction zones, and repeated infections within the same production areas.

Bottom line

ASF in South Korea is best described as a system under continuous pressure from a wildlife reservoir, with strong containment capacity in domestic pigs. The timing inconsistency reflects stochastic spillover events, not a loss of control. This contrasts with parts of the EU, where ASF has transitioned into a long-term endemic disease affecting both wildlife and domestic production systems.

- **Taiwan | January 26: Authorities fined a pig farm in Rende District, Tainan, USD ~\$6,500 (NT\$206,000) for illegally accepting food waste and animal byproducts, in violation of strengthened biosecurity regulations.** The infraction was identified during routine joint inspections following a nationwide ban on the transport and use of food waste at pig farms, implemented in late 2025 to reduce the risk of transboundary animal diseases, including ASF. Although no feeding was confirmed, officials stressed that improperly handled food waste poses a significant disease risk and stated that enforcement and inspections will continue to intensify to safeguard Taiwan's livestock industry.
- **Philippines | January 27: The Department of Agriculture reported a sharp decline in ASF-affected areas, with active cases reduced to eight barangays in three regions (Bicol, Central Visayas, and Caraga) by mid-January, down from 98 barangays in nine regions at the end of December 2025.** Authorities attributed the improvement to enhanced biosecurity, favorable weather conditions, sustained border controls, and the rollout of a government-controlled ASF vaccination program targeting ASF-negative herds. While officials cautioned that ASF-free status is not imminent, they expect continued reductions in disease spread if current measures remain in place.

Foot-and-Mouth Disease

EUROPE

Cyprus (north) | January 10: FMD remains confined to the occupied north three weeks after initial detection in the Famagusta district, with no new cases reported beyond the original outbreaks at two livestock units. Authorities have intensified active surveillance and systematic sampling of farms within a 3-km radius along the buffer (green) line, with all results from government-controlled areas to date remaining negative; vaccination of cattle in the north has completed its first phase, with additional phases and small-ruminant vaccinations planned. In response, Cyprus has implemented strict biosecurity measures, including 24-hour vehicle disinfection at all crossing points, expanded disinfectant mats, controlled milk transport protocols, and movement restrictions, supported by an EU veterinary emergency team. While no cases have been confirmed in the south or British Bases, the outbreak has already had trade and reputational impacts, with countries such as Australia and Canada temporarily questioning Cyprus' FMD-free status, raising concerns for the island's USD \$261 million (€220 million) dairy export sector, particularly halloumi, though key markets, including the UK and Saudi Arabia, have not imposed restrictions.

ASIA & EURASIA

In January 2026, Israel, Lebanon, Malaysia, and South Korea reported either new or ongoing FMD epidemiological events. Israel confirmed its first-ever detection of serotype SAT1, involving three linked outbreaks in cattle and goats despite ongoing vaccination efforts. Lebanon continues to manage 53 unresolved SAT1 outbreaks that have persisted since November 2025, Malaysia has one ongoing outbreak in domestic cattle, and South Korea reported a new serotype O outbreak after nine months of absence.

Regional Highlights

- **Israel | January 29: FMD SAT1 reported for the first time.** The first outbreak was reported on January 14 at a farm in Qidmat Zevi, where calves in a feedlot, originating from free-ranging cattle, developed clinical signs consistent with FMD. Before the outbreak, the herd had been vaccinated against serotype O but not against SAT1. A total of 80 cases were reported among 880 susceptible cattle, all of which were subsequently vaccinated. The second outbreak occurred on January 20 in Havat Nahlaim and involved both beef cattle in a feedlot and milking goats. In this outbreak, 50 cases were reported among 130 susceptible cattle, and 22 cases among 101 susceptible goats. In total, 226 susceptible animals were vaccinated. The third outbreak began on January 25 in Yehudia and affected free-ranging beef cattle. The calves involved in the Qidmat Zevi outbreak originated from this herd. This outbreak recorded 30 cases among 730 susceptible cattle. Notably, the herd had been vaccinated against SAT1 two days before the onset of clinical signs.
- **Lebanon | January 26: Fifty-three FMD SAT1 outbreaks remain unresolved.** Lebanon reported 53 ongoing FMD outbreaks to WOAH. These outbreaks are part of a disease event that started in November 2025, affecting domestic cattle and mixed herds of goats and sheep. This has led to 50 deaths, 2734 cases in cattle, and 200 cases in sheep/goats. Approximately 8400 susceptible species have been reported. Of these, 5140 were vaccinated.
- **South Korea | January 31: FMD serotype O outbreak.** South Korea has confirmed its first case of FMD since April last year, at a cattle farm in Incheon on the northwestern coast, triggering an immediate emergency response. Authorities raised alert levels in Incheon and neighboring Gimpo, deployed quarantine and disease control teams, and ordered the culling of all 246 cattle on the affected farm. A 48-hour standstill on livestock-related workers and vehicles was imposed across Incheon and Gyeonggi Province, alongside extensive disinfection of farms and surrounding roads to limit further spread.

AFRICA

In January 2026, FMD transmission remained active across southern Africa, with SAT1 outbreaks reported in Botswana, Zimbabwe, and Eswatini, and SAT2 continuing to cause outbreaks in South Africa. Countries implemented movement controls, vaccination, and enhanced surveillance.

Regional Highlights:

- **Botswana | January 25: FMD SAT1 confirmed near Zimbabwe border.** Botswana confirmed the outbreak in a village in the North-East district, with 35 cases and 187 susceptible cattle, with no deaths reported, and is believed to be linked to contact at shared grazing or watering points and illegal animal movements. In response, authorities imposed strict movement bans on cattle and other cloven-hoofed animals, halted the transport of fresh animal products, and implemented vaccination, surveillance, and biosecurity measures to contain the disease and protect Botswana's export-oriented beef industry, which supplies international markets. Botswana implements zoning as part of its efforts to maintain access to these beef markets. The current outbreak affected zone 6b. Further field investigations have detected additional suspicious cases in zone 3c Maitengwe, which borders zone 6b to the west. The

movement of feed, live animals, and animal products is prohibited between zones and out of Zones 6B, 3C (Maitengwe), 3B, and 7 (see Figure 5) (Source: [WOAH bulletin](#)).

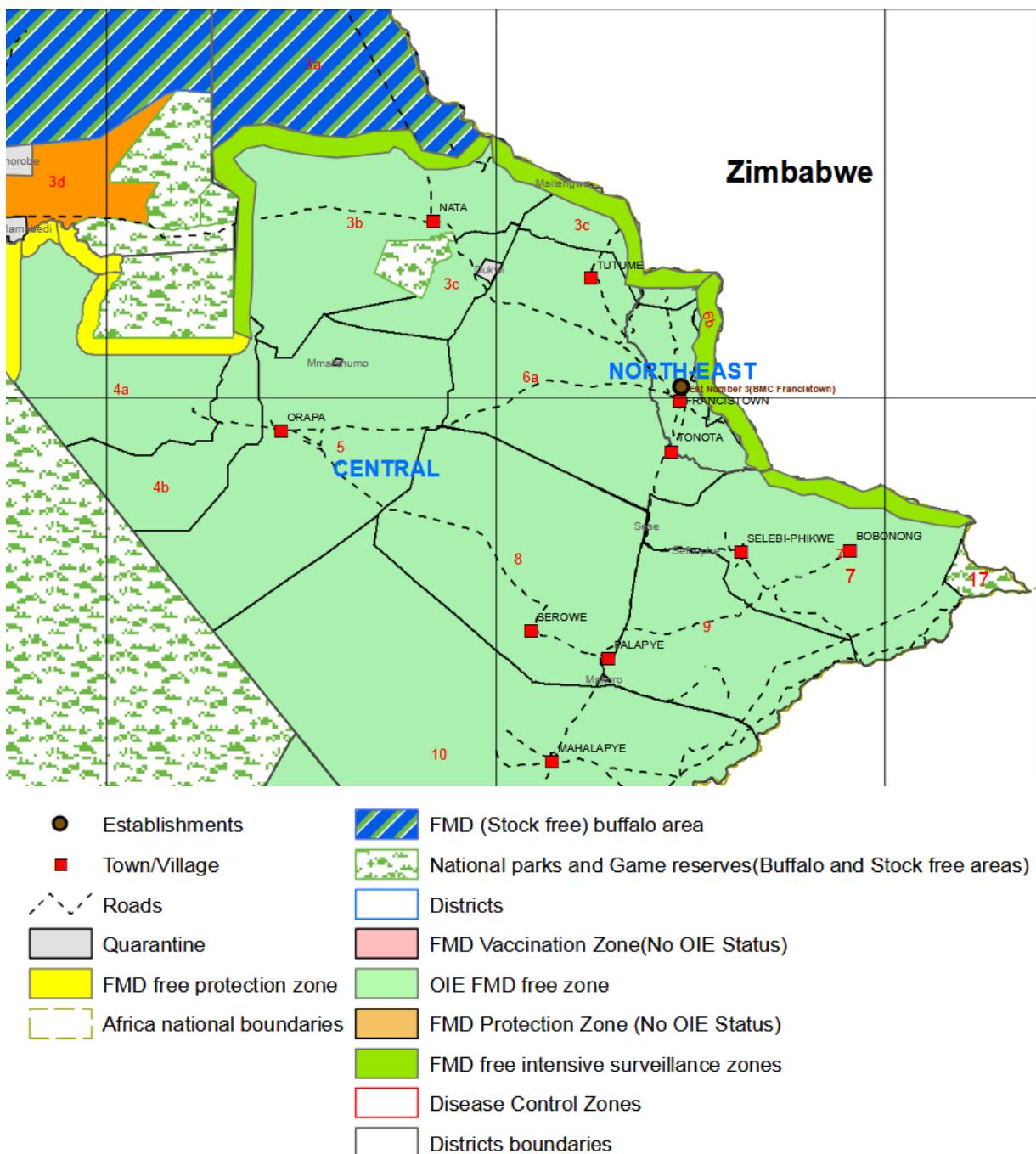


Figure 5. Map showing the zoning structure of FMD in Botswana. The zone numbers are labelled in red. (Note: Only the zones bordering Zimbabwe are shown.) (Source: [WOAH bulletin-Botswana disease control and protection zones 2019](#))

- **Zimbabwe | January 16: Two SAT1 outbreaks in Matabeleland South Province.** These outbreaks occurred in Mangwe District, Matabeleland South Province, affecting cattle in Maholi and Hannavale villages and linked to contact with a stray buffalo at shared grazing and

watering points. A total of 54 cases were identified among more than 2,400 susceptible cattle, with no deaths reported, and laboratory testing confirmed FMD virus serotype SAT1. Authorities responded with emergency vaccination of over 2,300 cattle, movement restrictions, quarantine, disinfection, enhanced surveillance, wildlife reservoir management, intensified border monitoring with South Africa, and a precautionary ban on imports of live cloven-hoofed animals and related products from affected South African provinces.

- **Eswatini | January 26: FMD SAT1 outbreaks continue to spread.** In January, 19 new FMD outbreaks were reported across the Lubombo, Manzini, and Hhohho regions, resulting in 67 new cases among 16,087 susceptible cattle. These outbreaks add to the ongoing SAT1 disease situation in Eswatini, which began in late November 2025 and has continued into 2026. While SAT1 transmission remains active, no new SAT2 outbreaks have been reported, although 32 ongoing outbreaks remain. In response to the evolving situation, the Ministry of Agriculture has maintained control measures and previously authorized limited livestock trade for slaughter strictly within FMD-affected areas to reduce the risk of further spread.
- **South Africa | January 27: FMD SAT2 update.** South Africa continues to report a substantial burden of FMD outbreaks associated with serotype SAT2. As of January, 681 outbreaks remain ongoing, with 125 additional outbreaks having been recorded since the previous update (December 2025). During this reporting period, 190 cases and 11 deaths were documented among 15,309 susceptible cattle. Ongoing SAT2 circulation continues to affect multiple provinces, particularly KwaZulu-Natal, Mpumalanga, Free State, North West, and Gauteng.

Surveillance at Point of Entry - Illicit Movement of Animal Products

Vietnam | January 8: Major supermarket chains and e-commerce platforms in Hanoi and Ho Chi Minh City removed products from Halong Canfoco after authorities detected the ASF virus in pork linked to the company's supply chain. Inspections at the Hai Phong facility identified 126 tons of ASF-positive pork, prompting authorities to order a product recall and the destruction of approximately 2 tons of canned pâté found to contain contaminated meat, alongside factory disinfection measures. Police arrested nine individuals accused of supplying diseased pork using falsified quarantine documents; the company stated the contaminated meat was not intentionally used for market distribution and has reviewed supplier controls. The incident triggered widespread consumer concern and precautionary product withdrawals, underscoring continued ASF risks to food safety, processing industries, and market confidence despite control measures.

Nipah Virus Outbreak in India

An outbreak of Nipah virus (*Henipavirus nipahense*) in West Bengal, India, was reported to WHO on January 26, 2026. Two people were affected, both human health workers working in the same hospital; Nipah virus was confirmed as the causative agent on January 13. The case fatality rate of Nipah virus infections in humans is reported as 40-75%, and no vaccine or specific treatment is available. This is the third outbreak in West Bengal, although multiple outbreaks have occurred in nearby Kerala since 2018. Over 190 contacts have tested negative, and the WHO indicated that the current public health risk is low. No travel or trade curbs are recommended at this time.

Nipah virus is a zoonotic paramyxovirus, most commonly transmitted to humans through the saliva, urine, or feces of infected fruit bats (genus *Pteropus*, or flying foxes). It can also be transmitted between humans. Other animals that may become infected with Nipah virus include pigs, horses, dogs, and cats; an outbreak in Malaysia and Singapore in pigs resulted in culling of over 1 million

pigs in 1998-1999. During that outbreak, pigs acted as amplifying hosts, facilitating spread of the virus to humans and contributing to the severity of the outbreak. Since then, one other outbreak in humans was associated with domestic animals, when infected horses were slaughtered and entered the human food chain in the Philippines.

Genomic analysis has identified differences between the strains of the virus present during the 1998-99 outbreak in Malaysia and Singapore, and those circulating in India and Bangladesh. The Malaysian strains indicate at least two spillover events from bats to pigs, while the Bangladeshi strains indicate multiple spillover events directly from bats to humans. **Recent cases of Nipah virus have occurred due to human-to-human and bat-to-human spread, with domestic animals not playing a significant role in transmission or as reservoirs for the virus.**

In the absence of the primary reservoir (fruit bats of genus *Pteropus*), the risk of Nipah entry to the United States is low. The current outbreak in humans appears contained, and no pigs were involved in the transmission cycle, further lowering the risk. Biosecurity measures are, as always, recommended, especially if farm workers are traveling to areas with endemic disease.

PRRS - How Denmark is tackling eradication

According to the Danish Agriculture and Food Council, by late 2025, 73.1% of Denmark's pig farms were officially negative for porcine reproductive and respiratory syndrome virus (PRRSV). PRRS has challenged the Danish pig industry for more than 30 years, and in 2022, the Danish swine industry set an ambitious goal for 85% of sow farms and 75% of finisher farms to be PRRS negative by mid-2026.

Denmark has taken a regional approach to PRRS control. Of the country's 98 regions, 68 contain pig production, and by late 2025, 45 of these regions were still affected by PRRS while 23 had been declared PRRS-free. The goal is to obtain official PRRS-free status for these regions by mid-2026, allowing corresponding shifts in trade and biosecurity protocols. At the herd level, the 2024 reduction plan has decreased PRRS prevalence from 35% to 22%. These gains reflect the impact of a coordinated, regionally based reduction program that combines routine surveillance, standardized herd classification, depopulation-repopulation strategies, and movement management. Importantly, Denmark's approach prioritizes regional disease status rather than individual-farm success alone, enabling protection of PRRS-free areas while directing targeted interventions to higher-risk regions.

A variety of tools have been used to monitor and prevent PRRS, including the specific pathogen free (SPF) system, which was originally developed by farmers and based on voluntary participation. In 2023, participation became mandatory, requiring all pig herds to officially declare their PRRS status. This transparent reporting system makes herd health status publicly available, allowing producers and buyers to make informed decisions.

Complementing field surveillance data, recent Danish modelling work, developed by the University of Copenhagen in collaboration with SEGES Innovation and the Danish Agriculture and Food Council, has focused on understanding PRRS transmission between pig herds. The modelling provides insight into why PRRS elimination remains challenging even as prevalence declines. Results suggest that a relatively small number of undetected infected herds may contribute disproportionately to ongoing transmission, with local area spread playing a significant role alongside animal movements. These findings highlight the limitations of relying solely on clinical detection or infrequent testing and underscore the importance of intensified surveillance and early detection to identify "silent" sources of virus circulation.

Together, these findings reinforce that sustainable PRRS control requires a multi-layered strategy that extends beyond individual-farm biosecurity. Denmark's experience illustrates the value of integrating surveillance data, epidemiological modelling, and policy-driven movement controls to reduce transmission risk at the population level. As PRRS remains endemic in many major swine-producing regions globally, Denmark's progress and the challenges it continues to face offer practical lessons for designing regional and national control systems that balance feasibility, cost, and long-term disease reduction.

References:

Recurrent reports reviewed

WOAH - [WAHIS interface - Immediate notifications](#)

WOAH - [WOAH Asia Regional Office](#)

FAO - [ASF situation update in Asia & Pacific](#)

DEFRA - [Animal conditions international monitoring reports](#)

CAHSS - [CEZD Weekly Intelligence Report](#)

European Commission - [ADIS disease overview](#)

[Considerations for competent authorities and livestock industries on use of African swine fever vaccines \(Genotype II\) to enhance disease control](#)

[SHIC Fact Sheet: Nipah Virus](#)

[Molecular epidemiology of Nipah virus](#)

[Distribution of Henipaviruses](#)

[WHO Nipah Virus fact sheet](#)

[WOAH Nipah Virus](#)

EUROPE

Denmark

[Almost 75% of Danish pig farms is free from PRRS](#)

[Unmasking PRRS infections: Lessons from Danish modelling](#)

[Collaboration secures healthier herds and safer food](#)

Spain

[Spain confirms 13 more African swine fever cases, total now 60](#)

[Catalan farmers estimate losses due to swine fever at €63 million.](#)

[ASF in Wild Boar in Spain Expected to Result in Shifting Marketing Opportunities for Pork](#)

Romania

[Swine fever outbreak confirmed at a farm with 6,000 pigs in Arad County](#)

Latvia

[African swine fever detected at one of Latvia's largest farms – quarantine and culling ordered](#)

Cyprus

['Vigilance continues over foot-and-mouth disease cases'](#)

[Cyprus tests farms along buffer zone to contain foot-and-mouth outbreak from occupied areas](#)

[24-Hour Vehicle Disinfection at Green-Line Crossings Tightens Bio-Security After FMD Outbreak](#)

ASIA

India

[Devastating Impact of African Swine Fever on Mizoram's Economy](#)

[African swine fever batters Mizoram's pig farming sector, losses touch Rs 115 crore in 2025](#)

[ASF outbreak brought under control](#)

[Why a Deadly Outbreak of Nipah Virus in India Matters to U.S. Swine Producers](#)

[WHO sees low risk of Nipah virus spreading beyond India](#)

[Nipah virus infection - India](#)

Taiwan

[Tainan farm fined for illegal food waste use](#)

Vietnam

[Supermarkets remove Halong Canfoco products from shelves after diseased pork found](#)

Philippines

[DA logs sharp decline in number of ASF-affected areas](#)

South Korea

[South Korea confirms ASF in Pocheon, orders culling and movement ban](#)

[Gangwon Province to Cull 20,000 Pigs After ASF Outbreak](#)

[**Korea reports 4th African swine fever case as virus spreads nationwide**](#)
[**African swine fever found at two Gyeonggi pig farms as authorities restrict access and consider culling**](#)

Peer-reviewed publications:

Ko, K. T., Oh, J., Son, C., Choi, Y., & Lee, H. (2024). Identifying risk clusters for African swine fever in Korea by developing statistical models. *Frontiers in Veterinary Science*, 11, Article 1416862.

<https://doi.org/10.3389/fvets.2024.1416862>

Lim, J.-S., Andraud, M., Kim, E., & Vergne, T. (2023). Three years of African swine fever in South Korea (2019–2021): A scoping review of

epidemiological understanding. *Transboundary and Emerging Diseases*, 2023, Article 4686980.

<https://doi.org/10.1155/2023/4686980>

Cadenas-Fernández, E., Ito, S., Aguilar-Vega, C., Sánchez-Vizcaíno, J. M., & Bosch, J. (2022). The role of the wild boar spreading African swine fever virus in Asia: Another underestimated problem. *Frontiers in Veterinary Science*, 9, Article 844209.

<https://doi.org/10.3389/fvets.2022.844209>

Abbreviations:

ASF - African swine fever

CSF - Classical swine fever

FMD - Foot-and-mouth disease

PRRS - Porcine reproductive and respiratory syndrome

SVV - Seneca Valley Virus

CCHF - Crimean-Congo hemorrhagic fever

PPV - Porcine parvoviral infection

WOAH - The World Organisation for Animal

EFSA - The European Food Safety Authority

PDCoV - Porcine Deltacoronavirus

The GSDMR team compiles information drawn from multiple national (Ministries of Agriculture or Livestock, Local governments, and international sources (WOAH, FAO, DEFRA, EC, etc.), as well as peer-reviewed scientific articles. The team makes every effort to ensure, but does not guarantee, the accuracy, completeness, or authenticity of the information. The designation employed and the presentation of material on maps and graphics do not imply the expression of any opinion whatsoever on the part of the GSDMR team concerning the legal or constitutional status of any country, territory, or sea area or concerning the delimitation of frontiers.

Any inquiries regarding this publication should be sent to us at SwineGlobal@umn.edu.

University of Minnesota Technical Coordination: Valeria Yustyniuk, Sylvester Ochwo, Rachael Schulte, Sarah Neuser, George Ondieki, Sol Perez¹